

Федеральное государственное бюджетное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра Наземных транспортно-технологических машин

УТВЕРЖДАЮ Начальник учебно-методического управления

«29» июня 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Теория механизмов и машин

направление подготовки/специальность 23.05.01 Наземные транспортно-технологические средства направленность (профиль)/специализация образовательной программы Подъемно-транспортные, строительные, дорожные средства и оборудование

Форма обучения очная

1. Цели и задачи освоения дисциплины (модуля)

Курс «Теория механизмов и машин» является специальной дисциплиной, которая ставит целью ознакомить студентов с наиболее обширной группой изделий, создаваемых человеком — механизмами и машинами. Закрепит знания теоретических курсов (высшей математики, физики, теоретической механики) — применив их основные выводы для изучения механизмов и машин. Ознакомит студентов с принципами построения и анализа механизмов и машин.

Основной задачей изучения приобретение необходимых инженерных навыков, а также овладение основными методами исследований, научно-исследовательской и проектно-конструкторской деятельности; изучение основных видов механизмов: рычажных, зубчатых, фрикционных, кулачковых и др.; анализ области применения различных механизмов. Овладение основными методами структурного, кинематического, силового и динамического анализа механизмов; основными методами исследований взаимодействия тел, преобразования систем сил при механическом движении; основами эффективности использования машин.

2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с инликаторами лостижения компетенций

индикаторами достижени	я компетенции	
Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения ОПОП
ОПК-1 Способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей;	ОПК-1.4 Представляет физический (химический) процесс (явление), протекающий на объекте профессиональной деятельности, в виде уравнения(й)	знает основы теории анализа и области применения различных механизмов; умеет проводить структурный, кинематический, силовой и динамический анализ механизмов и определять соответствующих параметров механизмов; владеет основными методами структурного, кинематического, силового и динамического анализа механизмов;
ПК-2 Способен организовывать и осуществлять контроль технического состояния подъемно-транспортных, строительных и дорожных машин и оборудования с использованием средств технического диагностирования	ПК-2.1 Осуществляет выбор документации, устанавливающей требования к техническому состоянию подъемно-транспортных, строительных и дорожных машин и оборудования	знает физические свойства элементов машин, их динамику во времени; основы эффективности использования машин; умеет использовать методы анализа при проектировании механизмов и устройств; владеет основными методами исследований взаимодействия тел, преобразования систем сил при механическом движении;

ПК-4 Способен разрабатывать проект конструкции подъемнотранспортных, строительных и дорожных машин и оборудования	ПК-4.1 Осуществляет выбор информационных ресурсов в соответствии с техническим заданием	знает основы эффективности использования машин. умеет объяснять причинно-следственные связи, используя общие и специальные понятия и термины владеет навыками применения пакетов прикладных программ при анализе и синтезе механизмов
УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1.4 Выявляет элемент(ы) и связь(и), создающие проблемную ситуацию	знает физические основы взаимодействия элементов механических систем; умеет логически и последовательно излагать факты; владеет навыками работы с учебной литературой и электронными базами данных;

3. Указание места дисциплины (модуля) в структуре образовательной программы

Данная дисциплина (модуль) включена в Блок «Дисциплины, модули» Б1.О.15.03 основной профессиональной образовательной программы 23.05.01 Наземные транспортно-технологические средства и относится к обязательной части учебного плана.

№ п/п	Предшествующие дисциплины	Код и наименование индикатора достижения компетенции
1	Теоретическая механика	ОПК-1.6, ПК-4.2
2	Компьютерная графика	ОПК-2.3, ОПК-5.2, ОПК-5.3
3	Физика	ОПК-1.1, ОПК-1.2, ОПК-1.4, ОПК -1.5, УК-1.1, УК-1.2, УК-2.4

Теоретическая механика

Знать: физические основы взаимодействия элементов механических систем;

Компьютерная графика

Владеть: навыками применения пакетов прикладных программ для проектирования деталей машин и механизмов.

Физика

Уметь: физические свойства элементов машин, их динамику во времени;

№ п/п	Последующие дисциплины	Код и наименование индикатора достижения компетенции
1	Детали машин и основы конструирования	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.2
2	Строительные машины	УК-2.2, ОПК-6.2, ОПК-6.3
3	Диагностика, инструментальный контроль и экспертиза наземных транспортно-технологических машин	ОПК-4.2, ОПК-4.3, ПК-2.3
4	Моделирование рабочих процессов	ПК-4.1, ПК-4.2, ПК-4.4
5	Подъемно-транспортные машины и оборудование	УК-2.4, ОПК-3.2
6	Автотракторный транспорт	ПК-2.2, ПК-2.3
7	Дорожные и коммунальные машины	ПК-1.1, ПК-1.2, ПК-1.3

4. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

			Семестр
Вид учебной работы	Всего часов	Из них часы на практическую подготовку	4
Контактная работа	80		80
Лекционные занятия (Лек)	32	0	32
Практические занятия (Пр)	48	0	48
Иная контактная работа, в том числе:	1,5		1,5
консультации по курсовой работе (проекту), контрольным работам (РГР)	1		1
контактная работа на аттестацию (сдача зачета, зачета с оценкой; защита курсовой работы (проекта); сдача контрольных работ (РГР))	0,25		0,25
контактная работа на аттестацию в сессию (консультация перед экзаменом и сдача	0,25		0,25
Часы на контроль	26,75		26,75
Самостоятельная работа (СР)	71,75		71,75
Общая трудоемкость дисциплины (модуля)			
часы:	180		180
зачетные единицы:	5		5

5. Содержание дисциплины (модуля), структурированное по разделам (темам) с указанием отведенного на них количества академических часов и видов учебных занятий

5.1. Тематический план дисциплины (модуля)

			Контактная работа (по учебным занятиям), час.								Код
№	Разделы дисциплины	Семестр	лен	сции	I	T3	J	ΤР	СР	Всего,	индикатор а достижени
		Ce	всего	из них на практи- ческую подго- товку	всего	из них на практи- ческую подго- товку	всего	из них на практи- ческую подго- товку			я компетенц ии
1.	1 раздел. Основные понятия теории механизмов и машин,										
	структура механизма										
1.1.	Основные определения структуры механизмов и их структурный анализ.	4	2		2				4	8	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
1.2.	Классификация кинематических пар в составе механизма. Степень подвижности механизма	4	2		2				4	8	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
1.3.	Синтез механизмов	4	2		2				4	8	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1

2.	2 раздел. Кинематический анализ механизмов							
2.1.	Кинематический анализ механизмов. Построение плана положений механизма.	4	2	4		4	10	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
2.2.	Методы кинематического анализа кривошипно-ползунного механизма. Определение скоростей кривошипно-ползунного механизма.	4	4	4		6	14	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
2.3.	Определение ускорений кривошипно-ползунного механизма.	4	2	4		8	14	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
3.	3 раздел. Динамический анализ механизмов							
3.1.	Классификация сил действующих на машину. Уравновешивающая сила.	4	2	4		7	13	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
3.2.	Графоаналитический способ определения уравновешивающей силы	4	2	4		8	14	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
3.3.	Уравновешивание сил инерции	4	4	6		8,75	18,75	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
4.	4 раздел. Зубчатые зацепления							
4.1.	Зубчатые зацепления. Назначение, классификация	4	2	2		2	6	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
4.2.	Эвольвентное зацепление, основное свойство эвольвентного зацепления	4	2	4		4	10	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
4.3.	Редукторы и мультипликаторы. Планетарные механизмы.	4	2	4		4	10	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
5.	5 раздел. Кулачковые механизмы							
5.1.	Кулачковые механизмы.	4	2	2		4	8	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
5.2.	Синтез кулачковых механизмов	4	2	4		4	10	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1

6.	6 раздел. Иная контактная работа						
6.1.	Курсовая работа	4				1,25	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1
7.	7 раздел. Контроль						
7.1.	Экзамен	4				27	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1

5.1. Лекции

3.1. J	Іекции	
№ разд	Наименование раздела и темы лекций	Наименование и краткое содержание лекций
1	Основные определения структуры механизмов и их структурный анализ.	Виды механизмов. Структурный анализ механизмов. Основные определения структуры механизмов и их структурный анализ. Звено, кинематическая пара, кинематическая цепь. Понятие звена и детали. Определение механизма и машины.
2	Классификация кинематических пар в составе механизма. Степень подвижности механизма	Классификация кинематических пар в составе механизма Классификация кинематических пар по степеням свободы. Высшие и низшие пары. Подвижность механизмов. Вывод формулы подвижности. Пример определения степени подвижности для плоских и пространственных механизмов;
3	Синтез механизмов	Основные принципы синтеза механизмов Основные принципы синтеза механизмов. Исходные данные и ограничения при синтезе механизмов. Примеры синтеза механизмов по исходным параметрам.
4	Кинематический анализ механизмов. Построение плана положений механизма.	Кинематический анализ механизмов. Построение плана положений механизма. Кинематический анализ механизмов. Построение плана положений механизма.
5	Методы кинематического анализа кривошипно-ползунного механизма. Определение скоростей кривошипно-ползунного механизма.	Графоаналитический метод анализа механизмов и аналитическая кинематика кривошипно-ползунного механизма. Графоаналитический метод анализа механизмов. Построение планов скоростей механизмов, аналитическая кинематика кривошипно-ползунного механизма.
6	Определение ускорений кривошипно-ползунного механизма.	Определение ускорений кривошипно-ползунного механизма. Построение планов ускорений механизмов. Анализ кривых скорости и ускорения.
7	Классификация сил действующих на машину. Уравновешивающая	Классификация сил, действующих на машину. Уравновешивающая сила. Классификация сил, действующих на машину. Уравновешивающая

	сила.	сила.
8	Графоаналитический способ определения уравновешивающей силы	Графоаналитический способ определения уравновешивающей силы методом кинетостатики Графоаналитический способ определения уравновешивающей силы. Определение реакций в кинематических парах. Выбор двигателя.
9	Уравновешивание сил инерции	Уравновешивание сил инерции, воздействующих на стойку кривошипно-ползунного механизма. Уравновешивание сил инерции, воздействующих на стойку кривошипно-ползунного механизма. Основной и избыточный противовесы, годографы сил инерции. Статическая и динамическая балансировка вращающихся деталей машин. Приведение сил и моментов в кривошипно-ползунном механизме. Исследование движения машинного агрегата, диаграмма энергомасс (Виттенбауэра) машин и ее расшифровка. Определение коэффициента неравномерности хода машины.
10	Зубчатые зацепления. Назначение, классификация	Зубчатые зацепления. Назначение, классификация Зубчатые зацепления. Назначение, классификация по расположению осей колес, виду зуба, его профиля. Основные размеры зубчатого обода и передачи. Модуль и передаточное число. Элементы теории зубчатых зацеплений, основная теорема плоских зацеплений.
11	Эвольвентное зацепление, основное свойство эвольвентного зацепления	Эвольвентное зацепление, основное свойство эвольвентного зацепления, Эвольвентное зацепление, основное свойство эвольвентного зацепления, качественные показатели эвольвентного зацепления: коэффициент перекрытия, относительное скольжение зубьев. Зацепление зубчатого колеса и зубчатой рейки, методы нарезания зубчатых колес. Подрезание зубчатых колес. Передаточное число. Сложные зубчатые механизмы.
12	Редукторы и мультипликаторы. Планетарные механизмы.	Редукторы и мультипликаторы. Планетарные механизмы. Редукторы и мультипликаторы. Планетарные механизмы. Передаточное число дифференциала и планетарного редуктора.
13	Кулачковые механизмы.	Кулачковые механизмы. Кулачковые механизмы. Назначение, конструкции, типы толкателей. Законы движения толкателей
14	Синтез кулачковых механизмов	Синтез кулачковых механизмов Законы движения толкателей, жесткий и мягкий удары. Угол давления в кулачковых механизмах. Определение его текущего значения. Синтез кулачковых механизмов по заданному закону движения толкателя.

5.2. Практические занятия

№ разд	Наименование раздела и темы практических занятий	Наименование и содержание практических занятий
1	Основные определения структуры механизмов и их структурный анализ.	Структурный анализ механизмов Основные названия звеньев механизмов, определение структуры механизма.
2	Классификация кинематических пар в составе механизма.	Определение степени подвижности для плоских и пространственных механизмов;

	Степень подвижности механизма	Пример определения степени подвижности для плоских и пространственных механизмов;
3	Синтез механизмов	Примеры синтеза механизмов по исходным параметрам. Основные принципы синтеза механизмов. Исходные данные и ограничения при синтезе механизмов. Примеры синтеза механизмов по исходным параметрам.
4	Кинематический анализ механизмов. Построение плана положений механизма.	Построение плана положений механизма. Построение плана положений механизма методом засечек.
5	Методы кинематического анализа кривошипно-ползунного механизма. Определение скоростей кривошипно-ползунного механизма.	Графический и графоаналитический методы кинематического анализа кривошипно-ползунного механизма. Графический и графоаналитический методы кинематического анализа кривошипно-ползунного механизма. Построение планов скоростей механизмов.
6	Определение ускорений кривошипно- ползунного механизма.	Построение планов ускорений механизмов. Графический метод кинематического анализа механизма Построение планов ускорений механизмов. Графический метод кинематического анализа механизма. Анализ кривых скорости и ускорения.
7	Классификация сил действующих на машину. Уравновешивающая сила.	Определение сил действующих на машину. Определение уравновешивающей силы. Определение уравновешивающей силы аналитическим способом и графическим способом с использованием метода построения "рычага Жуковского".
8	Графоаналитический способ определения уравновешивающей силы	Графоаналитический способ определения уравновешивающей силы. Определение реакций в кинематических парах. Выбор двигателя. Графоаналитический способ определения уравновешивающей силы методом кинетостатики. Определение реакций в кинематических парах. Выбор двигателя.
9	Уравновешивание сил инерции	Уравновешивание сил инерции, воздействующих на стойку кривошипно-ползунного механизма с помощью маховика. Уравновешивание сил инерции, воздействующих на стойку кривошипно-ползунного механизма. Приведение сил и моментов в кривошипно-ползунном механизме. Построение диаграммы энергомасс (Виттенбауэра) машин и ее расшифровка. Определение коэффициента неравномерности хода машины. Уравновешивание механизма с помощью маховика.
10	Зубчатые зацепления. Назначение, классификация	Зубчатые зацепления. Моделирование нарезания зубчатого колеса с эвольвентным профилем.
11	Эвольвентное зацепление, основное свойство эвольвентного зацепления	Эвольвентное зацепление. Передаточное число. Сложные зубчатые механизмы. Эвольвентное зацепление. Передаточное число. Определение передаточного числа простой зубчатой передачи и сложные зубчатых механизмов.

	Редукторы и	Редукторы и мультипликаторы.
12	мультипликаторы.	Определение передаточного числа редуктора и его нагрузочной
12	Планетарные	способности
	механизмы.	
		Кулачковые механизмы. Общая классификация. Виды кулачковых
13	Кулачковые	механизмов
13	механизмы.	Кулачковые механизмы. Назначение, конструкции, типы толкателей.
		Законы движения толкателей
		Синтез кулачковых механизмов по заданному закону движения
14	Синтез кулачковых	толкателя.
	механизмов	Синтез кулачковых механизмов по заданному закону движения
		толкателя. Последовательность выполнения

5.3. Самостоятельная работа обучающихся

5.5.	.3. Самостоятельная работа обучающихся				
№ разд	Наименование раздела дисциплины и темы	Содержание самостоятельной работы			
1	Основные определения структуры механизмов и их структурный анализ.	мов			
2	Классификация кинематических пар в составе механизма. Степень подвижности механизма	Изучение различных типов звеньев, кинематических пар для различных механизмов Изучение различных типов звеньев, кинематических пар для различных механизмов. Определения степени подвижности для плоских и пространственных механизмов			
3	Синтез механизмов	Синтез механизмов. Основные принципы синтеза механизмов. Исходные данные и ограничения при синтезе механизмов. Примеры синтеза механизмов по исходным параметрам.			
4	Кинематический анализ механизмов. Построение плана положений механизма.	механизма. Кинематический анализ механизмов. Построение плана положений			
5	Методы кинематического анализа кривошипно-ползунного механизма. Определение скоростей кривошипно-ползунного механизма.	Графический и графоаналитический методы кинематического анализа кривошипно-ползунного механизма. Построение планов скоростей механизмов. Графический и графоаналитический методы кинематического анализа кривошипно-ползунного механизма. Построение планов скоростей механизмов.			
6	Определение ускорений кривошипно- ползунного механизма.	Построение планов ускорений механизмов. Графический метод кинематического анализа механизма. Построение планов ускорений механизмов. Графический метод кинематического анализа механизма. Анализ кривых скорости и ускорения.			
7	Классификация сил действующих на машину. Уравновешивающая	Определение уравновешивающей силы Определение уравновешивающей силы аналитическим способом и графическим способом с использованием метода построения "рычага Жуковского".			

	сила.	
8	Графоаналитический способ определения уравновешивающей силы	Графоаналитический способ определения уравновешивающей силы. Определение реакций в кинематических парах. Выбор двигателя. Графоаналитический способ определения уравновешивающей силы методом кинетостатики. Определение реакций в кинематических парах. Выбор двигателя.
9	Уравновешивание сил инерции, воздействующих на стойку кривошипно-ползунного механизма. Уравновешивание сил инерции, воздействующих на стойку кривошипно-ползунного механизма. Приведение сил и моментов в кривошипно-ползунном механизма Построение диаграммы энергомасс (Виттенбауэра) машин и ее расшифровка. Определение коэффициента неравномерности хода машины. Уравновешивание механизма с помощью маховика.	
10	Зубчатые зацепления. Назначение, классификация	Зубчатые зацепления. Назначение, классификация по рас-положению осей колес, виду зуба, его профиля. Основные размеры зубчатого обода и передачи. Модуль и переда точное число. Элементы теории зубчатых зацеплений, основная теорема плоских зацеплений.
11	Эвольвентное зацепление, основное свойство эвольвентного зацепления	Эвольвентное зацепление. Передаточное число. Сложные зубчатые механизмы. Эвольвентное зацепление. Передаточное число. Сложные зубчатые механизмы.
12	Редукторы и мультипликаторы. Планетарные механизмы.	Редукторы и мультипликаторы. Планетарные механизмы. Передаточное число дифференциала и планетарного редуктора. Редукторы и мультипликаторы. Планетарные механизмы. Передаточное число дифференциала и планетарного редуктора.
13	Кулачковые механизмы.	Кулачковые механизмы. Назначение, конструкции, типы толкателей. Законы движения толкателей Кулачковые механизмы. Назначение, конструкции, типы толкателей. Законы движения толкателей
14	Синтез кулачковых механизмов	Синтез кулачковых механизмов по заданному закону движения толкателя. Синтез кулачковых механизмов по заданному закону движения толкателя.

6. Методические материалы для самостоятельной работы обучающихся по дисциплине (модулю)

Залогом успешного освоения этой дисциплины является обязательное посещение лекционных и практических занятий, так как пропуск одного (тем более, нескольких) занятий может осложнить освоение разделов курса.

Приступая к изучению дисциплины, необходимо в первую очередь ознакомиться содержанием РПД для студентов очной формы обучения, а также методическими указаниями по организации самостоятельной работы и подготовки к практическим занятиям.

При подготовке к практическим занятиям и в рамках самостоятельной работы по изучению дисциплины обучающимся необходимо:

- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- при самостоятельном изучении теоретической темы сделать конспект, используя рекомендованные в РПД источники;
 - выполнить практические задания в рамках изучаемой темы;
- ответить на контрольные вопросы по теме, используя материалы ФОС, либо групповые индивидуальные задания, подготовленные преподавателем;
 - подготовиться к проверочной работе, предусмотренной в контрольных точках;
 - подготовиться к промежуточной аттестации.

Итогом изучения дисциплины является экзамен и защита курсовой работы. Экзамен проводится по расписанию сессии. Защита курсовой работы проводится по расписанию зачетной недели. Форма проведения занятия — устная. Студенты, не прошедшие аттестацию по графику сессии, должны ликвидировать задолженность в установленном порядке.

7. Оценочные материалы для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине (модулю)

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины

№ п/п	Контролируемые разделы дисциплины (модуля)	Код и наименование индикатора контролируемой компетенции	Вид оценочного средства
1	Основные определения структуры механизмов и их структурный анализ.	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
2	Классификация кинематических пар в составе механизма. Степень подвижности механизма	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
3	Синтез механизмов	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты
4	Кинематический анализ механизмов. Построение плана положений механизма.	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
5	Методы кинематического анализа кривошипно-ползунного механизма. Определение скоростей кривошипно-ползунного механизма.	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
6	Определение ускорений кривошипно-ползунного механизма.	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
7	Классификация сил действующих на машину. Уравновешивающая сила.	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
8	Графоаналитический способ определения уравновешивающей силы	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
9	Уравновешивание сил инерции	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
10	Зубчатые зацепления. Назначение,	УК-1.4, ОПК-1.4, ПК-2.1,	Устный опрос, тесты,

	классификация	ПК-4.1	решение задач
11	Эвольвентное зацепление, основное свойство эвольвентного зацепления	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
12	Редукторы и мультипликаторы. Планетарные механизмы.	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
13	Кулачковые механизмы.	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
14	Синтез кулачковых механизмов	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	Устный опрос, тесты, решение задач
15	Курсовая работа	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	
16	Экзамен	УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1	

7.2. Типовые контрольные задания или иные материалы текущего контроля успеваемости, необходимые для оценки знаний, умений и навыков и (или) опыта профессиональной деятельности, характеризующих этапы формирования компетенций в процессе освоения дисциплины

Примерные варианты тестов

(для проверки сформированности компетенций УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.1)

1 раздел: «Основные понятия теории механизмов и машин, структура механизма»

- 1. Что такое «механизм»?
- 1) Механическая система тел, предназначенная для преобразования движения одного или нескольких тел в требуемые движения других тел;
 - 2) система, служащая для передачи сил;
 - 3) система, служащая для передачи движения и сил;
 - 4) система соединённых звеньев.
 - 2. Что такое подвижное звено?
 - 1) То, которое движется;
 - 2) деталь или группа деталей, образующих одну жесткую подвижную систему;
 - 3) то, которое вращается;
 - 4) то, которое совершает поступательное движение.
- 3. Звено плоского рычажного механизма, совершающее полное вращательное движение, называется
 - 1) кривошип
 - 2) ползун
 - 3) шатун
 - 4) коромысло
 - 4. Звено, совершающее поступательное движение, называется
 - 1) кривошип
 - ползун
 - 3) шатун
 - 4) коромысло
 - 5. Что такое кинематическая пара?
 - 1) Два звена;
 - 2) подвижное соединение двух звеньев;
 - 3) жёсткое соединение двух деталей;
 - 4) не подвижное соединение двух звеньев.
 - 6. Что такое элемент кинематической пары?
 - 1) Это часть звена;
 - 2) это стойка;
 - 3) это поверхность, линия, точка звена, по которым это звено соприкасается с другим звеном;
 - 4) это часть целого.
 - 7. Какие кинематические пары является низшими?
 - 1) Элементом пары является точка;

- 2) элементом пары является линия;
- 3) элементом пары является поверхность;
- 4) те, которые являются элементами.
- 8. Какие кинематические пары являются высшими?
- 1) Пара более совершенная;
- 2) пара, имеющая элемент точку или линию;
- 3) пара, имеющая элемент поверхность;
- 4) пара, расположенная выше других.
- 9. Что показывает степень подвижности механизма?
- 1) Сколько в механизме ведущих звеньев;
- 2) скольких плоскостях работает механизм;
- 3) как работает механизм;
- 4) сколько звеньев в механизме.
- 10. Что изучает кинематика механизмов?
- 1) Определение класса и порядка механизма;
- 2) определение пути, скорости и ускорение точек и звеньев механизма;
- 3) определение степени подвижности механизма;
- 4) структура механизма
- 11. Звено, совершающее сложно плоское движение, называется
- 1)кривошип
- 2) ползун
- 3) шатун
- 4) коромысло
- 2-й раздел: «Кинематический анализ механизмов»
- 12. Какой из методов расчетов кинематики механизма является наиболее точным:
- 1) Графический;
- 2) Графоаналитический;
- 3) Экспериментальный;
- 4) Аналитический.
- 13. Какова погрешность расчетов кинематики механизма при использовании графоаналитического метода:
 - 1) < 7...8%
 - 2) < 1...2%
 - 3) > 10%
 - 4) > 20%
 - 14. Как проводятся на плане скоростей линии действия векторов относительно скоростей?
 - 1) Перпендикулярно звену;
 - 2) параллельно звену;
 - 3) по направлению ₩1;
 - 4) против **ω**1.
 - 15. Что показывают векторы, выходящие из полюса плана скоростей?
 - 1) Направление векторов и величину абсолютных скоростей точек механизма;
 - 2) направление угловых скоростей звеньев;
 - 3) направление векторов сил инерции;
 - 4) направление вектора внешней нагрузки.
 - 3-й раздел: «Динамический анализ механизмов»
 - 16. Что такое «приведённая сила»?
 - 1) Сила, которая приложена к любому звену;
 - 2) сила, которая эквивалента всем другим силам;
 - 3) сила, которая в центр тяжести звена;
 - 4) это внешняя нагрузка.

- 17. Машина это устройство, которое энергию, материал и информацию
- 1) аккумулирует, потребляет и использует для преобразования действительности
- 2) производит, передаёт, преобразует и использует
- 3) накапливает, передаёт, преобразует и использует
- 4) потребляет, преобразует, передаёт и использует

4-й раздел: «Зубчатые зацепления. Классификация, основные термины, определения, кулачковые механизмы»

- 18. Что такое зубчатая передача?
- 1) Передача зубьями;
- 2) это трёхзвенный механизм, состоящий из двух зубчатых колёс (или из зубчатого колеса и рейки) и стойки;
 - 3) это передача звездочками;
 - 4) это винтовая передача.
 - 19. Каково основное назначение зубчатой передачи?
 - 1) Передать вращение на другой вал;
 - 2) понизить (повысить) частоту вращения ведомого вала;
 - 3) увеличить мощность на ведомом валу;
 - 4) увеличить расстояние между валами.
 - 20. Модуль зубчатого колеса величина размерная?
 - Да;
 - 2) нет.
 - 21. Формула определения диаметра делительной окружности
 - 1) d=mz;
 - 2) d=pz.
 - 22. Как образуется эвольвента?
 - 1) Точкой, лежащей на окружности, путём перекатывания окружности по прямой;
 - 2) точкой, лежащей на прямой, при перекатывания прямой по окружности;
 - 3) путём проведения косого сечения цилиндра;
 - 4) путём конического сечения кругового конуса.
- 23. С какой целью в основном производится смещение режущего инструмента при нарезании зубьев колес?
 - 1) Избежать подрез зубьев;
 - 2) изменить высоту зубьев;
 - 3) изменить толщину зубьев;
 - 4) увеличить производительность нарезания зубьев.
- 24. Коэффициент перекрытия \square является качественным показателем зацепления. Что конкретно он показывает?
 - 1) Хорошее зацепление;
 - 2) плохое зацепление;
 - 3) сколько пар зубьев находится в зацеплении;
- 4) цифры, стоящие справа от запятой, показывают процент времени нахождения в зацеплении двух пар зубьев на рабочей (активной) части линии зацепления.
 - 25. Какая величина модуля в нормальном сечении косозубого колеса?
 - 1) Такая же, как и в торцевом сечении;
 - 2) больше, чем в торцевом сечении;
 - 3) меньше, чем в торцевом сечении;
 - 4) такая же, как и в прямозубом колесе.
 - 26. Какая величина шага в нормальном сечении косозубого колеса?
 - 1) Такая же, как и в торцевом сечении;
 - 2) больше, чем в торцевом сечении;
 - 3) меньше, чем в торцевом сечении;
 - 4) такая же, как и в прямозубом колесе.

- 27. Как расположены оси валов в червяной передаче?
- 1) Оси пересекаются;
- 2) оси перекрещиваются;
- 3) оси параллельны;
- 4) оси вертикальны.
- 28. Как определить число заходов червяка (число начал витков)?
- 1) Посмотреть на червяк с торца;
- 2) посчитать витки глядя на червяк с боку;
- 3) измерить наружный диаметр;
- 4) измерить угол наклона витка.
- 5-й раздел: «Кулачковый механизм»
- 29. Кулачковый механизм действительно может осуществлять выстой (прерывистость движения) ведомого звена (толкателя, коромысла)?
 - Да;
 - 2) нет.
 - 30. Почему применяются кулачковые механизмы;
 - 1) можно получить заданный закон движения толкателя;
 - 2) можно получить заданный закон движения кулачка;
 - 31. По какому критерию определяется минимальный радиус кулачка
 - 1) на условии оптимальных размеров;
 - 2) на условии заклинивания;
 - 32. Какова цель экспериментальных методов исследования механизмов?
 - 1) Получение достоверных параметров;
 - 2) проверка расчётных данных;
 - 3) нахождение ошибок;
 - 4) произвести разрушение механизма

7.3. Система оценивания результатов обучения по дисциплине (модулю) при проведении текущего

контроля успеваемости	и результатов обучения по дисциплине (модулю) при проведении текущего
Оценка	знания:
«отлично» (зачтено)	- систематизированные, глубокие и полные знания по всем разделам
	дисциплины, а также по основным вопросам, выходящим за пределы
	учебной программы;
	- точное использование научной терминологии, систематически грамотное
	и логически правильное изложение ответа на вопросы;
	- полное и глубокое усвоение основной и дополнительной литературы,
	рекомендованной рабочей программой по дисциплине (модулю)
	умения:
	- умеет ориентироваться в теориях, концепциях и направлениях
	дисциплины и давать им критическую оценку, используя научные
	достижения других дисциплин
	навыки:
	- высокий уровень сформированности заявленных в рабочей программе
	компетенций;
	- владеет навыками самостоятельно и творчески решать сложные
	проблемы и нестандартные ситуации;
	- применяет теоретические знания для выбора методики выполнения
	заданий;
	- грамотно обосновывает ход решения задач;
	- безупречно владеет инструментарием учебной дисциплины, умение его
	эффективно использовать в постановке научных и практических задач;
	- творческая самостоятельная работа на
	практических/семинарских/лабораторных занятиях, активно участвует в
	групповых обсуждениях, высокий уровень культуры исполнения заданий

Оценка знания: «хорошо» (зачтено) - достаточно полные и систематизированные знания по дисциплине; - усвоение основной и дополнительной литературы, рекомендованной рабочей программой по дисциплине (модулю) умения: - умеет ориентироваться в основных теориях, концепциях и направлениях дисциплины и давать им критическую оценку; - использует научную терминологию, лингвистически и логически правильно излагает ответы на вопросы, умеет делать обоснованные выводы; - владеет инструментарием по дисциплине, умение его использовать в постановке и решении научных и профессиональных задач - самостоятельная работа на практических занятиях, участие в групповых обсуждениях, высокий уровень культуры исполнения заданий; - средний уровень сформированности заявленных в рабочей программе компетенций; - без затруднений выбирает стандартную методику выполнения заданий; - обосновывает ход решения задач без затруднений Оценка знания: «удовлетворительно» - достаточный минимальный объем знаний по дисциплине; (зачтено) - усвоение основной литературы, рекомендованной рабочей программой; - использование научной терминологии, стилистическое и логическое изложение ответа на вопросы, умение делать выводы без существенных ошибок умения: - умеет ориентироваться в основных теориях, концепциях и направлениях по дисциплине и давать им оценку; - владеет инструментарием учебной дисциплины, умение его использовать в решении типовых задач; - умеет под руководством преподавателя решать стандартные задачи навыки: - работа под руководством преподавателя на практических занятиях, допустимый уровень культуры исполнения заданий; - достаточный минимальный уровень сформированности заявленных в рабочей программе компетенций; - испытывает затруднения при обосновании алгоритма выполнения заданий Оценка знания: «неудовлетворительно» - фрагментарные знания по дисциплине; (не зачтено) - отказ от ответа (выполнения письменной работы); - знание отдельных источников, рекомендованных рабочей программой по дисциплине; умения: - не умеет использовать научную терминологию; - наличие грубых ошибок навыки: - низкий уровень культуры исполнения заданий; - низкий уровень сформированности заявленных в рабочей программе компетенций; - отсутствие навыков самостоятельной работы; - не может обосновать алгоритм выполнения заданий

7.4. Теоретические вопросы и практические задания для проведения промежуточной аттестации обучающихся, необходимые для оценки знаний, умений и навыков и (или) опыта профессиональной деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

- 7.4.1. Теоретические вопросы для проведения промежуточной аттестации обучающихся
 - Примерные теоретические вопросы для проведения промежуточной аттестации обучающихся
 - 1. Машина, основные виды механизмов, звено, кинематическая пара.
 - 2. Классификация кинематических пар.
 - 3. Структурная формула для плоских и пространственных механизмов.
 - 4. Графическая кинематика механизмов, планы скоростей.
 - 5. Графическая кинематика механизмов, планы ускорений.
 - 6. Аналитическая кинематика кривошипно-ползунного механизма (КПМ).
 - 7. Экспериментальный метод исследования механизмов с помощью датчиков.
 - 8. Преобразование механизма методом замены стойки.
- 9. Проворачиваемость звеньев и условия существования кривошипа в шарнирном 4-х звеннике.
 - 10. Классификация сил действующих на машину.
 - 11. Уравнение движения машин.
 - 12. Характерные виды движения машин.
 - 13. Замещение масс звеньев.
 - 14. Уравновешивание механизмов.
 - 15. Установка основного и избыточного противовеса.
 - 16. Уравновешивание вращающихся деталей.
 - 17. Динамическая балансировка ротора на станке.
 - 18.Исследование движения машинного агрегата.
- 19. Диаграмма энергомасс (Виттенбауэра). Определение коэффициента неравномерности хода машины.
 - 20.Классификация зубчатых передач.
 - 21.Основные кинематические характеристики зубчатой передачи.
 - 22. Основные геометрические характеристики зубчатой передачи.
 - 23. Основная теорема зацепления.
 - 24. Эвольвентное зацепление.
 - 25. Основное свойство эвольвентного зацепления.
 - 26. Зацепление зубчатого колеса и зубчатой рейки.
 - 27. Методы нарезания зубчатых колес.
 - 28.Подрезание зубчатых колес.
 - 29.Виды и цели коррекции.
 - 30.Обозначение цилиндрических редукторов.
 - 31. Обозначение цилиндрических мотор-редукторов.
 - 32. Зацепление конических колес.
 - 33.Обозначение коническо-цилиндрических редукторов.
 - 34. Червячное зацепление.
 - 35.Обозначение червячных редукторов.
 - 36. Обозначение червячных мотор-редукторов
 - 37.Сложные зубчатые механизмы. Последовательный ряд с паразитными колесами.
 - 38. Сложные зубчатые механизмы. Последовательный ряд с кратным зацеплением.
 - 39.Планетарные механизмы. Планетарный дифференциал.
 - 40. Планетарные механизмы. Планетарный редуктор.
 - 41. Планетарные механизмы. Редуктор Давида.
 - 42. Конический автомобильный дифференциал.
 - 43. Классификация кулачковых механизмов. Законы движения толкателей.
 - 44. Угол давления в кулачковых механизмах.
- 7.4.2. Практические задания для проведения промежуточной аттестации обучающихся
- 1. Структурный анализ механизма. Расчет степени подвижности и условия существования механизма.
- 2. Расчет кинематических параметров положений (6 или 12), скоростей (6 или 12), ускорений (1).
 - 3. Силовой анализ.

- 3.1. Определение приведенной (обобщенной) силы или приведенного момента сил.
- 3.2. Расчет сил в кинематических парах и мощности трения для 1 (одного) положения.
- 3.3. Расчет мощности электродвигателя и выбор его по каталогу.
- 3.4. Расчет зубчатой передачи в 2-х вариантах рядной и планетарной.
- 4. Динамический анализ. Расчет параметров маховика.

ВОПРОСЫ к защите курсового проекта по ТММ

- 1. Основные понятия теории механизмов и машин. Механизм. Кинематическая цепь. Звено. Кинематическая пара.
- 2. Классификация кинематических пар по числу условий связи (по И.И. Артоболевскому).
- 3. Степень подвижности пространственных (формула Сомова-Малышева) и плоских (формула Чебышева) механизмов.
 - 4. Структурные группы (группы Ассура). Класс и порядок структурных групп.
- 5. Структурный анализ механизмов и порядок его выполнения на примере шестизвенного механизма.
 - 6. Цель и задачи выполнения листа №1 курсового проекта.
 - 7. Построение планов положений, траекторий точек звеньев механизма.
- 8. Построение планов скоростей механизмов (на примере шарнирного четырех-звенника). Векторное уравнение для определения скоростей точек и порядок построения планов скоростей.
- 9. Построение планов ускорений механизмов (на примере шарнирного четырех-звенника). Векторное уравнение для определения ускорений точек и порядок построения планов ускорений.
 - 10. Определение величин и направлений угловых скоростей и угловых ускорений звеньев.
- 11. В каких случаях возникает кориолисово ускорение и как определяются его величина и направление?
 - 12. Что называется кинематической диаграммой?
- 13. Графическое дифференцирование и интегрирование при построении кинематических диаграмм.
- 14. Контроль правильности построения кинематических диаграмм (экстремумы, точки перегиба и т.д.).
 - 15. Цель и задачи выполнения листа №2 курсового проекта.
 - 16. Задачи силового анализа механизмов. Принцип Даламбера.
 - 17. Определение сил инерции в частных случаях движения звеньев плоских механизмов.
- 18. Определение реакций в кинематических парах (на примере группы Ассура II класса 2-го вида).
- 19. Силовой расчёт ведущего звена механизма. Уравновешивающая сила и уравновешивающий момент.
 - 20. Способ Н.Е Жуковского для определения уравновешивающей силы.
 - 21. Как учесть на рычаге Н.Е. Жуковского моменты сил?
 - 22. Как направленны моменты сил.
 - 23. Силы, действующие в машинах.
 - 24. Динамическая модель механизма. Приведение сил и масс в машинах.
 - 25. Приведенная сила. Приведенный момент.
 - 26. Приведенная масса. Приведенный момент инерции.
 - 27. Три стадии движения механизма.
 - 28. Периодические колебания движения машин и причины, вызывающие эти колебания.
- 29. Коэффициент неравномерности движения. Какие параметры оказывают влияние на него?
 - 30. Объясните назначение и роль маховика при работе механизма.
- 31. Покажите на графике приведенных моментов сил участки, на которых маховик накапливает кинетическую энергию и на которых отдаёт её обратно.
 - 32. От каких параметров зависит необходимый момент инерции маховика?
 - 33. Расскажите о последовательности расчёта момента инерции маховика методом

Виттенбауэра.

- 34. Как определить массу и размеры маховика?
- 35. Где наиболее выгодно устанавливать маховик, чтобы получить наименьшую его массу и размеры?

7.4.3. Примерные темы курсовой работы (проекта) (при наличии)

Примерные темы курсовой работы

Вариант 1 «Механизм привода качающегося инерционного конвейера»

Вариант 2 «Механизм привода зубострогального станка»

Вариант 3 «Механизм четырехтактного двигателя и трансмиссии»

Вариант 4 «Механизм привода вырубного пресса»

Задание 5 «Механизм привода щековой дробилки»

Вариант 6 «Механизм двухцилиндрового четырехтактного двигателя внутреннего сгорания»

Курсовая работа состоит из трех этапов:

1-й этап – Структурный и кинематический анализ кривошипно-ползунного механизма (КПМ),

2-й этап - Силовой анализ кривошипно-ползунного механизма (КПМ),

3-й этап — Уравновешивание сил инерции КПМ и выравнивание угловой скорости кривошипа с помощью маховика.

При работе над курсовой работой требуется чтобы студент выполнил определенный объем расчетных и графических работ. Все расчеты к соответствующей части работы оформляются в пояснительной записке. В ней должны быть приведены все используемые формулы, примеры расчетов с указанием размерности всех величин. В случае многократного повторения однотипных расчетов результаты вычислений должны быть сведены в таблицы.

Курсовая работа включает 25...30 страниц расчетно-пояснительной записки и 2-х листа формата A-1 графических построений, необходимых для графоаналитического анализа плоского рычажного механизма.

Расчетно-пояснительная записка содержит задание, содержание, разделы основной части, заключение и список используемой литературы.

Примерное наименование разделов:

- 1. Структурный анализ механизма. Расчет степени подвижности и условия существования механизма.
- 2. Расчет кинематических параметров положений (6 или 12), скоростей (6 или 12), ускорений (1).
 - 3. Силовой анализ.
 - 3.1. Определение приведенной (обобщенной) силы или приведенного момента сил.
 - 3.2. Расчет сил в кинематических парах и мощности трения для 1 (одного) положения.
 - 3.3. Расчет мощности электродвигателя и выбор его по каталогу.
 - 3.4. Расчет зубчатой передачи.
 - 4. Динамический анализ. Расчет параметров маховика.

В ходе выполнения курсовой работы студентам заданы: структурная схема плоского рычажного механизма, размеры и вес звеньев, а также сила сопротивления рабочей нагрузки.

Использованные студентом при проектировании источники: учебная и справочная литература, ГОСТы, а также интернет-сайты приводятся в списке использованной литературы.

В результате изучения дисциплины студент должен уметь проводить анализ плоского рычажного механизма графоаналитическим и графическим методами.

7.5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта профессиональной деятельности, характеризующие этапы формирования компетенций Процедура проведения промежуточной аттестации и текущего контроля успеваемости

регламентируется локальным нормативным актом, определяющим порядок организации и проведения текущего контроля успеваемости и промежуточной аттестации обучающихся. Процедура оценивания формирования компетенций при проведении текущего контроля приведена в п. 7.3. Типовые контрольные задания или иные материалы текущего контроля приведены в п. 7.2.

Залогом успешного освоения этой дисциплины является обязательное посещение лекционных и практических занятий, так как пропуск одного (тем более, нескольких) занятий может осложнить освоение разделов курса.

Приступая к изучению дисциплины, необходимо в первую очередь ознакомиться содержанием РПД для студентов очной формы обучения, а также методическими указаниями по организации самостоятельной работы и подготовки к практическим занятиям.

При подготовке к практическим занятиям и в рамках самостоятельной работы по изучению дисциплины обучающимся необходимо:

- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- при самостоятельном изучении теоретической темы сделать конспект, используя рекомендованные в РПД источники;
 - выполнить практические задания в рамках изучаемой темы;
- ответить на контрольные вопросы по теме, используя материалы ФОС, либо групповые индивидуальные задания, подготовленные преподавателем;
 - подготовиться к проверочной работе, предусмотренной в контрольных точках;
 - подготовиться к промежуточной аттестации.

Итогом изучения дисциплины является экзамен и защита курсовой работы. Экзамен проводится по расписанию сессии. Защита курсовой работы проводится по расписанию зачет-ной недели. Форма проведения занятия — устная. Студенты, не прошедшие аттестацию по графику сессии, должны Процедура проведения промежуточной аттестации и текущего контроля успеваемости регламентируется локальным нормативным актом, определяющим порядок

Промежуточная аттестация по дисциплине проводится в форме экзамена.

В экзаменационный билет включено два теоретических вопроса и практическое задание, соответствующие содержанию формируемых компетенций. Экзамен проводится в устной форме. Для подготовки по экзаменационному билету отводится ____45__ минут.

ликвидировать задолженность в установленном порядке.

7.6. Критерии оценивания сформированности компетенций при проведении промежуточной аттестации

	Уровень освоения и оценка			
Критерии	Оценка	Оценка		
1 1	«неудовлетворитель	«удовлетворительн	Оценка «хорошо»	Оценка «отлично»
оценивания	но»	0>>		
	«не зачтено»		«зачтено»	

	Уровень освоения компетенции «недостаточный». Компетенции не сформированы. Знания отсутствуют, умения и навыки не сформированы	Уровень освоения компетенции «пороговый». Компетенции сформированы. Сформированы базовые структуры знаний. Умения фрагментарны и носят репродуктивный характер. Демонстрируется низкий уровень самостоятельности практического навыка.	Уровень освоения компетенции «продвинутый». Компетенции сформированы. Знания обширные, системные. Умения носят репродуктивный характер, применяются к решению типовых заданий. Демонстрируется достаточный уровень самостоятельности устойчивого практического навыка.	Уровень освоения компетенции «высокий». Компетенции сформированы. Знания аргументированные, всесторонние. Умения успешно применяются к решению как типовых, так и нестандартных творческих заданий. Демонстрируется высокий уровень самостоятельности, высокая адаптивность практического навыка
знания	Обучающийся демонстрирует: -существенные пробелы в знаниях учебного материала; -допускаются принципиальные ошибки при ответе на основные вопросы билета, отсутствует знание и понимание основных понятий и категорий; -непонимание сущности дополнительных вопросов в рамках заданий билета.	Обучающийся демонстрирует: -знания теоретического материала; -неполные ответы на основные вопросы, ошибки в ответе, недостаточное понимание сущности излагаемых вопросов; -неуверенные и неточные ответы на дополнительные вопросы.	Обучающийся демонстрирует: -знание и понимание основных вопросов контролируемого объема программного материала; - знания теоретического материала -способность устанавливать и объяснять связь практики и теории, выявлять противоречия, проблемы и тенденции развития; -правильные и конкретные, без грубых ошибок, ответы на поставленные вопросы.	Обучающийся демонстрирует: -глубокие, всесторонние и аргументированные знания программного материала; -полное понимание сущности и взаимосвязи рассматриваемых процессов и явлений, точное знание основных понятий, в рамках обсуждаемых заданий; -способность устанавливать и объяснять связь практики и теории, -логически последовательные, содержательные, конкретные и исчерпывающие ответы на все задания билета, а также дополнительные вопросы экзаменатора.

	T			
	При выполнении	Обучающийся	Обучающийся	Обучающийся
	практического	выполнил	выполнил	правильно выполнил
	задания билета	практическое	практическое	практическое задание
	обучающийся	задание билета с	задание билета с	билета. Показал
	продемонстрировал	существенными	небольшими	отличные умения в
	недостаточный	неточностями.	неточностями.	рамках освоенного
	уровень умений.	Допускаются	Показал хорошие	учебного материала.
	Практические	ошибки в	умения в рамках	Решает
	задания не	содержании ответа	освоенного	предложенные
	выполнены	и решении	учебного	практические задания
умения	Обучающийся не	практических	материала.	без ошибок
	отвечает на вопросы	заданий.	Предложенные	Ответил на все
	билета при	При ответах на	практические	дополнительные
	дополнительных	дополнительные	задания решены с	вопросы.
	наводящих вопросах	вопросы было	небольшими	
	преподавателя.	допущено много	неточностями.	
		неточностей.	Ответил на	
			большинство	
			дополнительных	
			вопросов.	
	Не может выбрать	Испытывает	Без затруднений	Применяет
	методику	затруднения по	выбирает	теоретические знания
	выполнения	выбору методики	стандартную	для выбора методики
	заданий.	выполнения	методику	выполнения заданий.
	Допускает грубые	заданий.	выполнения	Не допускает ошибок
	ошибки при	Допускает ошибки	заданий.	при выполнении
	выполнении	при выполнении	Допускает ошибки	заданий.
	заданий,	заданий,	при выполнении	Самостоятельно
	нарушающие логику	нарушения логики	заданий, не	анализирует
	решения задач.	решения задач.	нарушающие	результаты
владение	Делает	Испытывает	логику решения	выполнения заданий.
навыками	некорректные	затруднения с	задач	Грамотно
	выводы.	формулированием	Делает корректные	обосновывает ход
	Не может	корректных	выводы по	решения задач.
	обосновать	выводов.	результатам	
	алгоритм	Испытывает	решения задачи.	
	выполнения	затруднения при	Обосновывает ход	
	заданий.	обосновании	решения задач без	
		алгоритма	затруднений.	
		выполнения		
		заданий.		

Оценка по дисциплине зависит от уровня сформированности компетенций, закрепленных за дисциплиной, и представляет собой среднее арифметическое от выставленных оценок по отдельным результатам обучения (знания, умения, владение навыками).

Оценка «отлично»/«зачтено» выставляется, если среднее арифметическое находится в интервале от 4,5 до 5,0.

Оценка «хорошо»/«зачтено» выставляется, если среднее арифметическое находится в интервале от 3,5 до 4,4.

Оценка «удовлетворительно»/«зачтено» выставляется, если среднее арифметическое находится в интервале от 2,5 до 3,4.

Оценка «неудовлетворительно»/«не зачтено» выставляется, если среднее арифметическое находится в интервале от 0 до 2,4.

8. Учебно-методическое и материально-техническое обеспечение дисциплины (модуля)

8.1. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины (модуля)

(мод	<i>y-1.1.</i>)	
№ п/п	Автор, название, место издания, издательство, год издания учебной и учебно-методической литературы	Количество экземпляров/электр онный адрес ЭБС
	Основная литература	
1	Петров С. Г., Клюшкин И. В., Теория машин и механизмов. Ч.1, Санкт- Петербург: Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2019	http://www.iprbooksh op.ru/102562.html
2	Петров С. Г., Клюшкин И. В., Теория машин и механизмов. Ч.2, Санкт- Петербург: Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2019	http://www.iprbooksh op.ru/102563.html
3	Петров С. Г., Клюшкин И. В., Теория машин и механизмов. Ч.3, Санкт- Петербург: Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2019	http://www.iprbooksh op.ru/102564.html
4	Петров С. Г., Клюшкин И. В., Теория машин и механизмов. Ч.4, Санкт-Петербург: Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2019	http://www.iprbooksh op.ru/102565.html
5	Чмиль В. П., Теория механизмов и машин, Санкт-Петербург: Лань, 2022	https://e.lanbook.com/book/209816
	<u>Дополнительная литература</u>	
1	Гумерова Х. С., Котляр В. М., Петухов Н. П., Сидорин С. Г., Прикладная механика, Казань: Казанский национальный исследовательский технологический университет, 2014	http://www.iprbooksh op.ru/62001.html
2	Виноградова Т. В., Кулида Ю. В., Анализ плоских рычажных механизмов, Санкт-Петербург: Санкт-Петербургский государственный архитектурно-строительный университет, ЭБС АСВ, 2017	http://www.iprbooksh op.ru/78590.html
3	Степыгин В. И., Чертов Е. Д., Матвеева Е. В., Структурный и кинематический анализ механизмов, Воронеж: Воронежский государственный университет инженерных технологий, 2019	http://www.iprbooksh op.ru/95378.html
4	Рязанцева И. Л., Прикладная механика. Схемный анализ и синтез механизмов и машин, Москва: Ай Пи Ар Медиа, 2023	https://www.iprbooks hop.ru/128979.html
1	Масленников Н. А., Прикладная механика, СПб., 2013	8
2	Слободяник Т. М., Денискина Т. В., Прикладная механика. Теория механизмов и машин, Москва: МИСИС, 2016	https://e.lanbook.com /book/108100

Обучающиеся из числа инвалидов и лиц с OB3 обеспечиваются печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

8.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Наименование ресурса сети «Интернет»	Электронный адрес ресурса
I К Vnc '' Leonия механизмов и машин'' в (//() Moodle	https://moodle.spbgasu.ru/enrol/index.p hp?id=1873

8.3. Перечень современных профессиональных баз данных и информационных справочных систем

Наименование	Электронный адрес ресурса
Электронно-библиотечная система издательства "IPRsmart"	http://www.iprbookshop.ru/
Система дистанционного обучения СПбГАСУ Moodle	https://moodle.spbgasu.ru/

Электронная библиотека Ирбис 64	http://ntb.spbgasu.ru/irbis64r_p lus/
Электронно-библиотечная система издательства "Лань"	https://e.lanbook.com/
Российская государственная библиотека	www.rsl.ru
Журналы издательства Sage. В настоящее время доступны статьи из 320 журналов по 36 предметным рубрикам: гуманитарные и общественные науки, информатика, инженерные дисциплины, экономика, здоровье и образование.	www.sagepublications.com
Список сборников трудов и конференций в РИНЦ/eLIBRARY	https://www.spbgasu.ru/upload-files/universitet/biblioteka/List_rinc_elibrary_06_07_2020.pdf

8.4. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного и свободно распространяемого программного обеспечения

Наименование	Способ распространения (лицензионное или свободно распространяемое)
Math Cad версия 15	Сублицензионное соглашение на использование продуктов "РТС" с ООО"Софт Лоджистик" договор №20716/SPB9 2010 г. Лицензия бессрочная

8.5. Материально-техническое обеспечение дисциплины

Сведения об оснащенности учебных аудиторий и помещений для самостоятельной работы

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность оборудованием и техническими средствами обучения
32. Помещения для самостоятельной работы	Помещение для самостоятельной работы (читальный зал библиотеки, ауд. 217): ПК-23 шт., в т.ч. 1 шт ПК для лиц с ОВЗ (системный блок, монитор, клавиатура, мышь) с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду СПбГАСУ.
32. Учебные аудитории для проведения практических занятий, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Комплект мультимедийного оборудования (персональный компьютер, мультимедийный проектор, экран, аудиосистема), доска, комплект учебной мебели, подключение к компьютерной сети СПбГАСУ, выход в Интернет
32. Учебные аудитории для проведения лекционных занятий	Учебная аудитория для проведения занятий лекционного типа, комплект мультимедийного оборудования (персональный компьютер, мультимедийный проектор, экран, аудиосистема), доска, экран, комплект учебной мебели, подключение к компьютерной сети СПбГАСУ, выход в Интернет

Для инвалидов и лиц с OB3 обеспечиваются специальные условия для получения образования в соответствии с требованиями нормативно-правовых документов.