

Федеральное государственное бюджетное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра Строительной механики

УТВЕРЖДАЮ Начальник учебно-методического управления

«29» июня 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Строительная механика и металлические конструкции наземных транспортно-технологических машин

направление подготовки/специальность 23.05.01 Наземные транспортно-технологические средства направленность (профиль)/специализация образовательной программы Подъемно-транспортные, строительные, дорожные средства и оборудование

Форма обучения очная

1. Цели и задачи освоения дисциплины (модуля)

Целями освоения дисциплины являются формирование у студентов фундаментальных знаний в области расчетов элементов инженерных конструкций на прочность, жесткость и устойчивость; приобретение практических навыков расчета стержней, пластин и оболочек на прочность, жесткость и устойчивость; освоение методов решения задач строительной механики машин.

Задачами освоения дисциплины являются

- изучение основных уравнений и методов решения задач строительной механики машин; изучение современных методов расчетов на прочность, жесткость и устойчивость элементов машин и конструкций;

2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

индикаторами достижени	ія компстенции	
Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения ОПОП
ОПК-1 Способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей;	ОПК-1.6 Осуществляет решение математических уравнений	знает Знает требования к состоянию машины умеет Применить на практике знания в области механики строительных конструкций владеет Методами контроля состояния машины
ПК-4 Способен разрабатывать проект конструкции подъемнотранспортных, строительных и дорожных машин и оборудования	ПК-4.2 Разрабатывает проект технического предложения с учетом возможности механизации, автоматизации и роботизации подъемнотранспортных, строительных и дорожных машин и оборудования	знает основные понятия механики машин умеет на практике применять основные инструменты расчёта машин владеет Основными понятиями в области составления конструкторской документации

3. Указание места дисциплины (модуля) в структуре образовательной программы

Данная дисциплина (модуль) включена в Блок «Дисциплины, модули» Б1.О.27 основной профессиональной образовательной программы 23.05.01 Наземные транспортно-технологические средства и относится к обязательной части учебного плана.

№ п/п	Предшествующие дисциплины	Код и наименование индикатора достижения компетенции
1	Сопротивление материалов	ОПК-1.6, ПК-4.2
2	Высшая математика	УК-1.5, УК-1.6
3	Теоретическая механика	ОПК-1.6, ПК-4.2
4	Аналитическая динамика и теория колебаний	ОПК-1.5, ОПК-1.6, ПК-2.4

№ п/п	Последующие дисциплины	Код и наименование индикатора достижения компетенции
1	Конструкторская практика	ПК-1.5, ПК-2.2, ПК-2.3, ПК-3.3, ПК-4.2, ПК-4.4, ПК-4.5
2	Машины для землеройных работ	УК-2.3, УК-2.5, ОПК-4.2
3	Автотракторный транспорт	ПК-2.2, ПК-2.3
4	Дорожные и коммунальные машины	ПК-1.1, ПК-1.2, ПК-1.3
5	Основы изобретательского творчества	УК-1.1, УК-1.2, УК-1.5, ОПК-4.2

4. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

			Семестр		
Вид учебной работы	Всего часов	Из них часы на практическую подготовку	5	6	
Контактная работа	96		32	64	
Лекционные занятия (Лек)	48	0	16	32	
Практические занятия (Пр)	48	0	16	32	
Иная контактная работа, в том числе:	1,5			1,5	
консультации по курсовой работе (проекту), контрольным работам (РГР)	1			1	
контактная работа на аттестацию (сдача зачета, зачета с оценкой; защита курсовой работы (проекта); сдача контрольных работ (РГР))	0,25			0,25	
контактная работа на аттестацию в сессию (консультация перед экзаменом и сдача	0,25			0,25	
Часы на контроль	12,75		4	8,75	
Самостоятельная работа (СР)	105,75		36	69,75	
Общая трудоемкость дисциплины (модуля)					
часы:	216		72	144	
зачетные единицы:	6		2	4	

5. Содержание дисциплины (модуля), структурированное по разделам (темам) с указанием отведенного на них количества академических часов и видов учебных занятий

5.1. Тематический план дисциплины (модуля)

			K		-	бота (по ям), час		Всего,	Код		
№	№ Разделы дисциплины	Семестр	лекции		ПЗ		ЛР		СР	индикатор а достижени	
			всего	из них на практи- ческую подго- товку	всего	из них на практи- ческую подго- товку	всего	из них на практи- ческую подго- товку			я компетенц ии
1.	1 раздел. 1. Расчётные схемы и кинематический анализ сооружений.										

1.1.	Введение. типы расчётных схем.	5	2				2	ОПК-1.6, ПК-4.2
1.2.	Кинематический анализ расчётных схем.	5	2	2		9	13	ОПК-1.6, ПК-4.2
2.	2 раздел. 2. Расчёт статически определимых систем на действие неподвижной нагрузки							
2.1.	Однодисковые и двухдисковые безраспорные расчётные схемы.	5	1	2			3	ОПК-1.6, ПК-4.2
2.2.	Многопролётные шарнирноконсольные балки	5	1				1	ОПК-1.6, ПК-4.2
2.3.	Трёхшарнирные рамы и арки	5	1	2			3	ОПК-1.6, ПК-4.2
2.4.	Замкнутые контуры и комбинированные расчётные схемы.	5	1	2		9	12	ОПК-1.6, ПК-4.2
3.	3 раздел. 3. Расчёт статически определимых систем на действие подвижной нагрузки.							
3.1.	Линии влияния в простых балках	5	2	2			4	ОПК-1.6, ПК-4.2
3.2.	Линии влияния в шарнирно- консольных балках	5	1				1	ОПК-1.6, ПК-4.2
3.3.	Линии влияния в плоских фермах	5	1			9	10	ОПК-1.6, ПК-4.2
4.	4 раздел. 4. Расчёт статически неопределимых систем методом сил							
4.1.	Свойство СНС. Идея метода сил.	5	2	2			4	ОПК-1.6, ПК-4.2
4.2.	Расчёт методом сил на действие силовой нагрузки.	5	1	4			5	ОПК-1.6, ПК-4.2
4.3.	Упрощения при расчёте симметричных расчётных схем методом сил.	5	1			9	10	ОПК-1.6, ПК-4.2
5.	5 раздел. Контроль							
5.1.	Зачёт	5					4	ОПК-1.6, ПК-4.2
6.	6 раздел. 5. Расчёт статически неопределимых систем методом перемещений.							
6.1.	Идея метода перемещений. Система канонических уравнений	6	6	4		20	30	ОПК-1.6, ПК-4.2
6.2.	Расчёт методом перемещений на действие силовой нагрузки	6	4	4		20	28	ОПК-1.6, ПК-4.2

6.3.	Использование упрощений при решении задач методом перемещений	6	2	4		9,75	15,75	ОПК-1.6, ПК-4.2
6.4.	Определение перемещений при использовании МП	6	2	4			6	ОПК-1.6, ПК-4.2
6.5.	Решение задач методом перемещений на температурную деформацию	6	4	4			8	ОПК-1.6, ПК-4.2
6.6.	Упрощение решения задач методом перемещений при использовании МП	6	4	4		10	18	ОПК-1.6, ПК-4.2
6.7.	Расчёт конструкций при наличии начальных деформаций.	6	4	4		10	18	ОПК-1.6, ПК-4.2
7.	7 раздел. 6. Основы динамики сооружений.							
7.1.	Основные понятия динамики сооружений.	6	6	4			10	ОПК-1.6, ПК-4.2
8.	8 раздел. Иная контактная работа							
8.1.	Иная контактная работа	6					1,25	ОПК-1.6, ПК-4.2
9.	9 раздел. Контроль							
9.1.	Зачёт с оценкой	6					9	ОПК-1.6, ПК-4.2

5.1. Лекции

№ разд	Наименование раздела и темы лекций	Наименование и краткое содержание лекций
1	Введение. типы расчётных схем.	Типы схем. Предмет и объект изучения строительной механики.
2	Кинематический анализ расчётных схем.	Кинематический анализ Понятие о геометрической неизменяемости расчётных схем.
3	Однодисковые и двухдисковые безраспорные расчётные схемы.	Однодисковые системы Проверка геометрической неизменяемости однодисковых и двухдисковых схем. Анализ образования и порядок определения реакций во внешних и внутренних связях. Построение эпюр усилий.
4	Многопролётные шарнирно-консольные балки	Многопролётные балки Классификация расчетных схем ШКБ. Порядок образования и порядок расчета реакций в дисках ШКБ. Проверка равновесия. Построение эпюр усилий. Рациональная расстановка шарниров в расчетной схеме.
5	Трёхшарнирные рамы и арки	Рамы и арки Принципы определения реакций в трехшарнирных системах. Определение реакций в трехшарнирных рамах при произвольных нагрузке и расположении опор. Классификация и основные элементы арок. Порядок определения реакций и усилий в сечениях трехшарнирной арки при вертикальной нагрузке. понятие о рациональном очертании оси арки.
6	Замкнутые контуры и комбинированные расчётные схемы.	замкнутые контуры и раскрытие контура рамы. Статически определимый замкнутый контур. Способы раскрытия контура и определение реакций во внутренних связях. Эпюры

		усилий. Принципы расчета комбинированных расчетных схем.
7	Линии влияния в простых балках	Линии влияния в балках Понятие о линии влияния. Построение линий влияния реакций и усилий в балке на двух шарнирных опорах. Построение линий влияния реакций и усилий в консольной балке.
8	Линии влияния в шарнирно-консольных балках	Линии влияния в шарнирно-консольных балках Принципы построения линий влияния в шарнирно-консольных балках. Передача линии влияния с исследуемого диска по поэтажной схеме. Построение линий влияния реакций и усилий. Примеры задач.
9	Линии влияния в плоских фермах	Линии влияния в плоских фермах Особенности построения линий влияния в фермах. Построение линий влияния реакций и усилий в простой балочной ферме. Построение линий влияния реакций и усилий в консольной ферме.
10	Свойство СНС. Идея метода сил.	Метод сил. Идея метода сил. Сравнительный анализ статически определимых и статически неопределимых систем. Степень статической неопределимости. Основная система метода сил.
11	Расчёт методом сил на действие силовой нагрузки.	Расчёт на действие силовой нагрузки. Канонические уравнения метода сил при расчете на силовую нагрузку. Определение коэффициентов и свободных членов. Порядок расчета методом сил на силовую нагрузку. Пример расчета.
12	Упрощения при расчёте симметричных расчётных схем методом сил.	Упрощения при расчёте методом сил пространственных сил. Использование способа группировки неизвестных в симметричных системах. Использование способа разложения нагрузки.
14	Идея метода перемещений. Система канонических уравнений	Метод перемещений. Степень кинематической неопределимости. Основная система. Канонические уравнения. Способы определения коэффициентов и свободных членов. Построение эпюры моментов в заданной системе.
15	Расчёт методом перемещений на действие силовой нагрузки	Расчёт методом перемещений на действие силовой нагрузки Проверка геометрической неизменяемости, построение эпюр. Анализ образования конструкций.
16	Использование упрощений при решении задач методом перемещений	Упрощения при использовании МП Симметрия, кососимметрия, упрощения при решение.
17	Определение перемещений при использовании МП	Определение перемещений при решении задач методом перемещений. Выбор ОСМП и дальнейшее решение задачи
18	Решение задач методом перемещений на температурную деформацию	Температурные деформации Температурное воздействие на строительные конструкции.
19	Упрощение решения задач методом перемещений при использовании МП	Упрощение решения задач методом перемещений при использовании МП Использование основной системы без постановки линейных связей. Использование симметрии расчетной схемы. Группировка неизвестных и разложение нагрузки.
20	Расчёт конструкций при наличии	Конструкции с начальными деформациями Расчет плоских рам методом перемещений на тепловое воздействие.

	начальных деформаций.	Расчет плоских рам методом перемещений на действие неравномерной осадки опор. Особенности канонических уравнений и построения эпюр моментов в основной и заданной системах.
21	Основные понятия динамики сооружений.	Введение в динамику сооружений Предмет изучения динамики сооружений. Виды динамических нагрузок. Уравнения динамики. Степени свободы масс системы.

5.2. Практические занятия

5.2.1	Ірактические занятия	
№ разд	Наименование раздела и темы практических занятий	Наименование и содержание практических занятий
2	Кинематический анализ расчётных схем.	Решение задач на кинематический анализ систем Решение примеров данного типа задач
3	Однодисковые и двухдисковые безраспорные расчётные схемы.	Решение многодисковых систем Решение задач на определение реакций опор и построение эпюр усилий в однодисковых рамах. Решение задач на определение реакций во внешних и внутренних связях двухдисковых безраспорных рам. Построение эпюр усилий.
5	Трёхшарнирные рамы и арки	Решение трёхшарнирных рам Изучение теоретического материала по теме. Трехшарнирные рамы при расположении опор на одном уровне. Порядок определения реакций в связях. Построение эпюр усилий. Трехшарнирные рамы при расположении опор на разных уровнях. Порядок определения реакций и построение эпюр усилий. Самостоятельное решение задач на расчет трехшарнирной рамы.
6	Замкнутые контуры и комбинированные расчётные схемы.	Раскрытие контура в замкнутых системах Раскрытие статически определимого замкнутого контура различными способами. Использование "ферменного" стержня. Построение эпюр усилий в замкнутом контуре. Расчет реакций и усилий в комбинированной расчетной схеме, включающей рамную часть и "ферменные" стержни.
7	Линии влияния в простых балках	Линии влияния в балках Изучение теоретического материала по теме. Решение типовых задач.
10	Свойство СНС. Идея метода сил.	Решение задач Методом сил. изучение теоретического материала по теме.
11	Расчёт методом сил на действие силовой нагрузки.	Расчёт методом сил на действие силовой нагрузки Вычисление степени статической неопределимости. Выбор основной системы метода сил. Составление и решение канонического уравнения. Построение эпюры моментов в заданной системе. Деформационная проверка.
14	Идея метода перемещений. Система канонических уравнений	Решение задач на метод перемещений Разбор практического материала
15	Расчёт методом перемещений на действие силовой нагрузки	Расчёт методом перемещений на действие силовой нагрузки Проверка геометрической неизменяемости, построение эпюр
16	Использование упрощений при решении задач методом перемещений	Решение задач при использовании МП Решение практических задач.

17	Определение перемещений при использовании МП	Определение перемещений при решении задач методом перемещений. Решение практических задач на определение перемещений
18	Решение задач методом перемещений на температурную деформацию	Решение задач на температурные деформации. Закрепление практического материала.
19	Упрощение решения задач методом перемещений при использовании МП	Упрощение решения задач методом перемещений при использовании МП Выбор упрощенной основной системы. Особенности деформированных схем и эпюр моментов в основной системе. Решение задач.
20	Расчёт конструкций при наличии начальных деформаций.	Решение задач методом перемещений при наличии начальных деформаций. Пример расчета один раз кинематически неопределимой рамы методом перемещений на изменение температуры. Решение задач.
21	Основные понятия динамики сооружений.	Решение задач на динамическое воздействие. Разбор примеров задач

5.3. Самостоятельная работа обучающихся

№ разд	Наименование раздела дисциплины и темы	Содержание самостоятельной работы
2	Кинематический анализ расчётных схем.	Самостоятельная работа по разделу Самостоятельное изучение студентами пройденного материала
6	Замкнутые контуры и комбинированные расчётные схемы.	Самостоятельная работа по разделу Изучение теоретического материала по теме. Самостоятельное решение практических задач на раскрытие замкнутых контуров и на расчет реакций и усилий в комбинированных расчетных схемах.
9	Линии влияния в плоских фермах	Самостоятельная работа по разделу Изучение теоретического материала по теме. Выполнение задачи 2.2 из КР № 2.
12	Упрощения при расчёте симметричных расчётных схем методом сил.	Самостоятельная работа по разделу Изучение теоретического материала по теме. Расчет симметричной рамы под действием произвольной нагрузки. Решение с помощью группировки неизвестных и с помощью разложения нагрузки. Решение задач.
14	Идея метода перемещений. Система канонических уравнений	Самостоятельное изучение Метода перемещений Изучение теоретического материала по теме.
15	Расчёт методом перемещений на действие силовой нагрузки	Самостоятельное изучение материала, относительно действия силовой нагрузки. Повторение теоретического материала студентами самостоятельно.
16	Использование упрощений при решении задач методом перемещений	Самостоятельное изучение упрощённого решения при применении метода перемещений Повторение теоретического материала студентами самостоятельно.
19	Упрощение решения задач методом	Самостоятельное изучение определения перемещений в рамах, с помощью метода перемещений (ПМ)

	перемещений при использовании МП	Самостоятельное закрепление пройденного материала.
20	Расчёт конструкций при наличии начальных деформаций.	Самостоятельная работа в семестре по изучению задач с начальными деформациями. Изучение теоретического материала по теме. Решение задач.

6. Методические материалы для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельные работы выполняются индивидуально в свободное от занятий время. Обучающийся обязан:

- перед выполнением самостоятельной работы, повторить теоретический материал, пройденный на аудиторных занятиях;
 - выполнить работу согласно заданию;
 - по каждой самостоятельной работе представить преподавателю отчет в письменном виде.
 - ответить на поставленные вопросы.
 - работу выполнить аккуратно, с выполнением требований ГОСТ.

7. Оценочные материалы для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине (модулю)

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины

/.1.1	теречень компетенции с указанием этапов из	с формирования в процессе ост	т
№ п/п	Контролируемые разделы дисциплины (модуля)	Код и наименование индикатора контролируемой компетенции	Вид оценочного средства
1	Введение. типы расчётных схем.	ОПК-1.6, ПК-4.2	Устный опрос. решение задач.
2	Кинематический анализ расчётных схем.	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.
3	Однодисковые и двухдисковые безраспорные расчётные схемы.	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.
4	Многопролётные шарнирно-консольные балки	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.
5	Трёхшарнирные рамы и арки	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.
6	Замкнутые контуры и комбинированные расчётные схемы.	ОПК-1.6, ПК-4.2	Устный опрос. решение задач.
7	Линии влияния в простых балках	ОПК-1.6, ПК-4.2	Устный опрос. решение задач.
8	Линии влияния в шарнирно-консольных балках	ОПК-1.6, ПК-4.2	Устный опрос. решение задач.
9	Линии влияния в плоских фермах	ОПК-1.6, ПК-4.2	Устный опрос. решение задач.
10	Свойство СНС. Идея метода сил.	ОПК-1.6, ПК-4.2	Устный опрос. решение задач.
11	Расчёт методом сил на действие силовой нагрузки.	ОПК-1.6, ПК-4.2	Устный опрос. решение задач.
12	Упрощения при расчёте симметричных расчётных схем методом сил.	ОПК-1.6, ПК-4.2	Устный опрос. решение задач.
13	Зачёт	ОПК-1.6, ПК-4.2	Устный опрос. Задачи.
14	Идея метода перемещений. Система канонических уравнений	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.
15	Расчёт методом перемещений на действие силовой нагрузки	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.
16	Использование упрощений при решении задач методом перемещений	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.

17	Определение перемещений при использовании МП	ОПК-1.6, ПК-4.2	Устный опрос. Решение задч.
18	Решение задач методом перемещений на температурную деформацию	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.
19	Упрощение решения задач методом перемещений при использовании МП	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.
20	Расчёт конструкций при наличии начальных деформаций.	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.
21	Основные понятия динамики сооружений.	ОПК-1.6, ПК-4.2	Устный опрос. Решение задач.
22	Иная контактная работа	ОПК-1.6, ПК-4.2	
23	Зачёт с оценкой	ОПК-1.6, ПК-4.2	Устный опрос. решение задач.

7.2. Типовые контрольные задания или иные материалы текущего контроля успеваемости, необходимые для оценки знаний, умений и навыков и (или) опыта профессиональной деятельности, характеризующих этапы формирования компетенций в процессе освоения дисциплины

Типовые контрольные задания или иные материалы текущего контроля успеваемости размещены по адресу: ЭИОС / СДО Moodle / Курсы / Кафедры / Строительной механики (https://moodle.spbgasu.ru/course/index.php?categoryid=338).

7.3. Система оценивания результатов обучения по дисциплине (модулю) при проведении текущего контроля успеваемости

контроля успеваемости	
Оценка	знания:
«отлично» (зачтено)	- систематизированные, глубокие и полные знания по всем разделам
	дисциплины, а также по основным вопросам, выходящим за пределы
	учебной программы;
	- точное использование научной терминологии, систематически грамотное
	и логически правильное изложение ответа на вопросы;
	- полное и глубокое усвоение основной и дополнительной литературы,
	рекомендованной рабочей программой по дисциплине (модулю)
	умения:
	- умеет ориентироваться в теориях, концепциях и направлениях
	дисциплины и давать им критическую оценку, используя научные
	достижения других дисциплин
	навыки:
	- высокий уровень сформированности заявленных в рабочей программе
	компетенций;
	- владеет навыками самостоятельно и творчески решать сложные
	проблемы и нестандартные ситуации;
	- применяет теоретические знания для выбора методики выполнения
	заданий;
	- грамотно обосновывает ход решения задач;
	- безупречно владеет инструментарием учебной дисциплины, умение его
	эффективно использовать в постановке научных и практических задач;
	- творческая самостоятельная работа на
	практических/семинарских/лабораторных занятиях, активно участвует в
	групповых обсуждениях, высокий уровень культуры исполнения заданий

Оценка знания: «хорошо» (зачтено) - достаточно полные и систематизированные знания по дисциплине; - усвоение основной и дополнительной литературы, рекомендованной рабочей программой по дисциплине (модулю) умения: - умеет ориентироваться в основных теориях, концепциях и направлениях дисциплины и давать им критическую оценку; - использует научную терминологию, лингвистически и логически правильно излагает ответы на вопросы, умеет делать обоснованные выводы; - владеет инструментарием по дисциплине, умение его использовать в постановке и решении научных и профессиональных задач - самостоятельная работа на практических занятиях, участие в групповых обсуждениях, высокий уровень культуры исполнения заданий; - средний уровень сформированности заявленных в рабочей программе компетенций; - без затруднений выбирает стандартную методику выполнения заданий; - обосновывает ход решения задач без затруднений Оценка знания: «удовлетворительно» - достаточный минимальный объем знаний по дисциплине; (зачтено) - усвоение основной литературы, рекомендованной рабочей программой; - использование научной терминологии, стилистическое и логическое изложение ответа на вопросы, умение делать выводы без существенных ошибок умения: - умеет ориентироваться в основных теориях, концепциях и направлениях по дисциплине и давать им оценку; - владеет инструментарием учебной дисциплины, умение его использовать в решении типовых задач; - умеет под руководством преподавателя решать стандартные задачи навыки: - работа под руководством преподавателя на практических занятиях, допустимый уровень культуры исполнения заданий; - достаточный минимальный уровень сформированности заявленных в рабочей программе компетенций; - испытывает затруднения при обосновании алгоритма выполнения заданий Оценка знания: «неудовлетворительно» - фрагментарные знания по дисциплине; (не зачтено) - отказ от ответа (выполнения письменной работы); - знание отдельных источников, рекомендованных рабочей программой по дисциплине; умения: - не умеет использовать научную терминологию; - наличие грубых ошибок навыки: - низкий уровень культуры исполнения заданий; - низкий уровень сформированности заявленных в рабочей программе компетенций; - отсутствие навыков самостоятельной работы; - не может обосновать алгоритм выполнения заданий

7.4. Теоретические вопросы и практические задания для проведения промежуточной аттестации обучающихся, необходимые для оценки знаний, умений и навыков и (или) опыта профессиональной деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

- 7.4.1. Теоретические вопросы для проведения промежуточной аттестации обучающихся Примерные вопросы при проведении зачёта с оценкой.
 - Какая наука называется строительной механикой?
 - Какие задачи изучаются в курсе строительной механики стержневых систем?
 - Какие важные факторы определяют задачу расчета сооружения?
 - Какие этапы предполагает всякий инженерный расчет?
 - Как соотносятся учебные курсы сопротивления материалов и строительной механики?
- Что понимают под расчетной схемой сооружения? Какими соображениями руководствуются при идеализации сооружения?
 - Как классифицируются расчетные схемы?
 - Перечислите основные типы стержневых систем.
 - Какие гипотезы принимаются для упрощения расчета сооружений?
 - Какие расчетные схемы сооружений изучают в строительной механике стержневых систем?
 - Приведите пример стержневой расчетной системы.
 - Приведите пример тонкостенной расчетной схемы.
 - Приведите пример массивной расчетной схемы.
 - Что такое связь и какими характеристиками она обладает?
 - Что определяет кинематическая и статическая характеристики связи?
 - Какие системы называются плоскими?
 - Какие системы называются пространственными?
 - Какие типы опор в плоских системах вы знаете?
 - Как идеализируются опоры сооружений?
 - Какими характеристиками обладает шарнирно-подвижная опора?
 - Какими характеристиками обладает шарнирно-неподвижная опора?
 - Какими характеристиками обладает заделка?
 - Какими характеристиками обладает подвижное защемление?
 - Какими связи называются внутренними?
 - Сформулируйте принцип независимости действия сил.
- Какие усилия возникают в сечении стержня плоской стержневой системы при произвольном нагружении? Дать их определение.
- Какие усилия возникают в сечении стержня пространственной стержневой системы при произвольном нагружении?
- Укажите направления возможных реакций и перемещений для различных типов опор плоских систем.
- Какая модель деформируемого тела применяется в классической строительной механике и к каким материалам она неприменима?
 - Какая система называется геометрически неизменяемой?
 - Что называется степенью свободы плоской стержневой системы?
 - Что такое простой шарнир и скольким кинематическим связям он эквивалентен?
 - Что такое сложный шарнир?
 - Какой шарнир в плоских системах называется кратным?
 - Как определяется кратность шарнира в плоских системах?
 - Цель и задачи кинематического анализа сооружений.
 - В чем заключается кинематический анализ расчетной схемы сооружения?
- Какие системы называются геометрически неизменяемыми, изменяемыми и мгновенно изменяемыми?
 - Что такое число степеней свободы?
 - По какой формуле определяется степень свободы плоской стержневой системы?
 - Как записывается основная формула кинематического анализа?
 - Как классифицируются системы по степени свободы?
 - Что называется диском?
 - Сколько степеней свободы на плоскости имеет точка?
 - Сколько степеней свободы на плоскости имеет диск?
 - По какому принципу объединяются 2 диска на плоскости в единое целое?

- По какому принципу объединяются 3 диска на плоскости в единое целое?
- В чем заключается необходимое условие геометрической неизменяемости?
- Как проверяется геометрическая неизменяемость системы?
- Какие системы называются изменяемыми?
- Какие способы образования неизменяемых систем знаете?
- Каков порядок кинематического анализа?
- Что такое метод нулевой нагрузки?
- Какое необходимое, но недостаточное условие является признаком геометрической неизменяемости системы?
 - В чем состоит анализ геометрической структуры системы?
 - Перечислите способы образования геометрически неизменяемых стержневых систем?
 - Какие системы называют мгновенно-изменяемыми и почему?
 - Почему мгновенно-изменяемые системы не применяют в строительной практике?
 - Почему недопустимы системы, близкие к мгновенно изменяе-мым?
 - Классификация сооружений по величине степени свободы.
 - Принципы (леммы) образования геометрически-неизменяемых систем.
 - Признаки мгновенно-изменяемых систем.
 - Сущность структурного анализа сооружений.
 - Общая последовательность проведения кинематического анализа.
 - Дайте определения статически определимой и статически неопределимой системы
 - Назовите главную особенность статически определимых систем?
 - Какие формы уравнений равновесия можно записать для плоской системы?
 - Что такое изгибающий момент, поперечная сила и продольная сила?
 - Как определяется изгибающий момент в сечении, как определяется его знак?
 - Как определяется поперечная сила в сечении, как определяется ее знак?
 - Как определяется продольная сила в сечении, как определяется ее знак?
 - Какой дифференциальной зависимостью связаны изгибающий момент М и поперечная сила
 - Как определить положение сечения с экстремальным значением изгибающего момента?
 - Какие методы используются при расчете статически определимых систем?
 - В чем сущность метода замены связей?

 \mathbf{Q} ?

- Какой общий вывод можно сделать после анализа методов расчета статически определимых систем?
 - От какой по величине нагрузки строится линия влияния усилия?
 - Какое направление имеют единичная сила или момент при построении линии влияния?
 - Меняется ли положение единичной силы при построении линии влияния?
 - Какие методы используются для построения линий влияния?
- Какое характерное отличие проявляется на линиях влияния усилий при узловой передаче нагрузки?
- Понятие о многопролетных статически определимых балках. Их преимущества и недостатки. Область применения.
- Как проверить статическую определимость и геометрическую неизменяемость многопролетной статически определимой балки?
 - Опишите алгоритм расчета многопролетной статически определимой балки
 - Порядок проведения кинематического анализа разрезных балок
 - Какая система называется поэтажной схемой? Приведите пример.
 - Порядок построения поэтажной схемы для многопролетных статически определимых балок.
- Последовательность построения эпюр M и Q в многопролетных статически определимых балках.
 - Сформулируйте правила построения поэтажной схемы
 - Охарактеризуйте узловой способ передачи нагрузки в разрезной балке
 - Правила нахождения опорных реакций в многопролетной балке
 - Проверки, применяемые при расчете разрезных балок
 - Алгоритм расчета балки на совместное действие постоянной и временной нагрузки
 - Какие зависимости между изгибающим моментом, поперечной силой и нагрузкой

используются при проверке правильности построения эпюр?

- Как построить эпюру изгибающих моментов при узловой пере-дачи нагрузки?
- Последовательность построения эпюр M, Q, N в статически определимых рамах.
- Проверки правильности построения эпюр M, Q, N в статически определимых рамах.
- Понятие о ферме и ее основных элементах.
- По каким признакам классифицируют фермы?
- Какая ферма называется плоской?
- Приведите пример плоской балочной фермы с треугольной решеткой.
- Приведите пример фермы с полигональным верхним поясом.
- Приведите пример консольной фермы.
- Основные допущения, принимаемые при расчете ферм.
- Какие способы используются при расчете ферм?
- Назовите признаки, упрощающие расчет ферм.
- Каково условие геометрической неизменяемости и статической определимости плоской фермы?
- Каково условие геометрической неизменяемости и статической определимости пространственной фермы?
 - Опишите порядок расчета статически определимых плоских ферм.
 - Порядок проведения кинематического анализа плоских ферм.
 - Правила сведения внешней нагрузки к узловой при расчете плоских ферм.
 - Особенности учета собственного веса при расчете плоских ферм.
 - Как прикладывается нагрузка в расчетной схеме фермы?
 - Понятие моментной точки. Правила ее нахождения.
 - Охарактеризуйте три способа определения усилий в плоских фермах.
- Аналитические методы определения усилий в стержнях ферм. Правило знаков для продольной силы (усилия) в стержнях.
- Какие требования предъявляются к расчету ферм при использовании метода вырезания узлов?
 - Метод вырезания узлов. Некоторые частные случаи (леммы) по равновесию узлов.
 - Метод сквозных сечений.
- Какие основные условия применения метода сквозных сечений при расчете плоских балочных ферм?
 - Какую точку называют моментной при использовании метода сквозных сечений?
- Когда использование способа проекций в методе сквозных сечений предпочтительнее способа моментной точки?
 - Проверки правильности определения усилий в стержнях ферм.
 - Правила построения линий влияния продольных усилий в стержнях фермы
 - Что понимают под ездовым поясом при построении линий влияния?
- Особенности построения линий влияния усилий в элементах 1-4-й категорий для плоских ферм
- Определение опасного положения подвижной нагрузки (единичной, связанной системы нескольких сил, полубесконечной) при расчете плоских ферм
 - Правила расчета ферм на совместное действие постоянной и подвижной нагрузок.
 - Какие системы называются распорными? Что такое распор?
 - В чем главная особенность трехшарнирных систем?
- Как определяются опорные реакции в трехшарнирных рамах с опорами на одном уровне при действии произвольной нагрузки?
 - Как определяется распор в трехшарнирной арке?
 - Как определяется положение нулевых точек линий влияния M, Q и N в арке?
- Какие преимущества и недостатки имеет трехшарнирная арка по сравнению с балкой и фермой?
- Постройте рациональную ось трехшарнирной системы при загружении левой половины равномерно распределенной нагрузкой (средний шарнир расположите посредине пролета).
- Что такое линия влияния усилий? Постройте линию влияния для реакции опоры в однопролетной балке.
 - Что такое линия влияния и чем она отличается от эпюры?

- Что показывает ордината линии влияния какого-либо усилия?
- О чем говорит знак ординаты линии влияния какого-либо усилия?
- В чем преимущество метода линий влияния?
- Приведите пример линии влияния вертикальной реакции в простой балке.
- Приведите пример линии влияния вертикальной реакции в консольной балке.
- Приведите пример линии влияния изгибающего момента и поперечной силы в сечении простой балки.
- Приведите пример линии влияния изгибающего момента и поперечной силы в сечении консольной балки.
- В каких точках многопролетной шарнирно-консольной балки линии влияния могут иметь переломы?
- Как по линии влияния определить величину усилия при действии на систему нескольких сосредоточенных сил?
- Как по линии влияния определить величину усилия при действии на систему нескольких распределенных нагрузок?
 - Чем отличается линия влияния при узловой передаче нагрузки?
 - Как определяется усилие от постоянной нагрузки по линии влияния?
 - Какие способы используются при построении линий влияния усилий фермы?
 - Чем отличаются действительная и возможная работы?
 - По какой формуле определяется работа статически приложенной силы?
 - По какой формуле определяется работа внезапно приложенной силы?
 - Как формулируется теорема Бетти?
 - Какие состояния рассматриваются при определении перемещений?
 - Чем отличаются определение перемещений в рамах и фермах?
 - Какое перемещение называется возможным?
 - Какая работа называется возможной?
 - Сформулируйте теорему о взаимности работ.
 - Сформулируйте теорему о взаимности перемещений.
 - Сформулируйте принцип возможных перемещений.
 - Запишите формулу, соответствующую теореме о взаимности реакций.
 - Какие два состояния системы необходимо рассматривать для определения перемещения?
 - Как выбрать схему вспомогательного состояния для определения линейного перемещения?
 - Как выбрать схему вспомогательного состояния для определения угла поворота?
- Как выбрать схему вспомогательного состояния для определения взаимного смещения двух сечений?
- В каком виде используется формула Мора для определения перемещений в изгибаемых плоских системах?
- В каком виде используется формула Мора для определения перемещений в комбинированных плоских системах?
- По какой формуле можно перемножить две эпюры в виде трапеций при определении перемещений?
- По какой формуле можно перемножить две эпюры, одна из которых криволинейная, а другая имеет вид трапеции?
 - По какой формуле определяются перемещения от температурного воздействия?
- Дать определение степени статической неопределимости и показать как ее определять для плоских систем.
 - Свойства статически неопределимых (с.н.) систем.
- В чем состоит отличие статически неопределимых систем от статически определимых систем?
 - Как определяется число лишних связей статически неопределимой системы?
 - Основные методы расчета с.н. систем.
 - Что называется основной системой метода сил?
 - Какие требования предъявляются к основным системам метода сил?
- Формирование основных систем при расчете статически неопределимых ферм, плоских рам и балок по методу сил
 - Определение количества лишних связей в методе сил. Выбор основной системы.

- Физический смысл системы канонических уравнений в методе сил.
- Сформулируйте физический смысл условий совместности деформаций в методе сил.
- Система канонических уравнений метода сил: ее смысл, способы и проверка правильности решения. Матричный способ решения системы.
 - Каким требованиям должна удовлетворять основная система?
 - В чем заключается физический смысл канонических уравнений метода сил?
- В чем заключается физический смысл коэффициентов при неизвестных системы канонических уравнений метода сил?
 - В чем заключается физический смысл свободных членов уравнений метода сил?
- Какой особенностью обладают главные коэффициенты системы канонических уравнений метода сил?
- Какой особенностью обладают побочные коэффициенты системы канонических уравнений метода сил?
- Чем отличается вычисление коэффициентов при неизвестных от вычисления грузовых коэффициентов?
 - Какое преимущество дает использование теоремы Максвелла?
- Определение перемещений с использованием способа Верещагина. Теорема о взаимности перемещений (теорема Максвелла).
 - Порядок расчета с.н. рам методом сил на внешнее силовое воздействие.
- Покажите основную систему и запишите канонические уравнения метода сил при расчете рамы на осадку опор?
 - Основные проверки правильности расчета с.н. рам методом сил.
- Запишите систему канонических уравнений метода сил для дважды статически неопределимой системы.
 - Какие существуют способы проверки коэффициентов канонических уравнений?
 - Какие необходимо выполнить проверки эпюры изгибающих моментов в заданной системе?
 - В чем заключается универсальная проверка?
 - В чем заключается физический смысл деформационной проверки?
 - Для чего используется постолбцовая проверка?
 - Каков алгоритм метода сил?
 - Какие способы проверки правильности расчета существуют?
 - Особенности расчета неразрезных балок методом сил. Уравнения 3-х моментов.
- Какие три способа применяются при определении перемещений статически неопределимых систем?
 - Какие системы называются симметричными?
 - Какое преимущество дает использование симметрии рамы?
 - Какие требования предъявляются к основной системе метода сил при учете симметрии?
 - Какие упрощения возможны при расчете симметричных стержневых систем методом сил?
 - Приведите пример выбора основной системы метода сил при учете симметрии.
 - В чем смысл группировки неизвестных при расчете методом сил?
- Покажите на примере получение основной системы метода сил с использованием группировки неизвестных.
 - Что такое степень кинематической неопределимости?
 - Какие гипотезы принимаются при расчете рам методом перемещений?
 - Как определяется основная система метода перемещений?
 - Что называется жесткостью?
 - В чем заключается сущность метода перемещений?
 - Как записывается система канонических уравнений метода перемещений?
 - Что является основными неизвестными в методе перемещений?
 - Какая дополнительная информация нужна при расчете рам методом перемещений?
 - Как рассчитываются элементарные состояния основной системы метода перемещений?
- Какими способами определяются коэффициенты канонических уравнений метода перемещений?
 - Как формулируется теорема Релея?
 - Из каких этапов состоит алгоритм метода перемещений?
 - Какие сходства и различия имеют метод сил и метод перемещений?

- Формирование основной системы при расчете кинематически неопределимых плоских рам и балок по методу перемещений.
- Сформулируйте физический смысл условий совместности деформаций в методе перемещений.
- Система канонических уравнений метода перемещений: ее смысл, способы и проверка правильности решения. Матричный способ решения системы.
 - Какие внутренние усилия возникают в пространственных стержневых системах?
 - Какова сущность континуального подхода?
 - Что такое дискретный подход в механике?
 - Какова общая схема реализации различных методов расчета при дискретном подходе?
 - Как определяется дискретная модель стержневой системы?
 - Какой способ переноса нагрузки предпочтительнее и чем это обосновано?
 - Что такое уравнение равновесия и как оно получается?
- Какие особенности расчетной модели можно установить по полученной матрице равновесия?
 - Что такое матрица податливости элемента?
 - Из каких этапов состоит алгоритм дискретного метода?
 - Какой из подходов механики реализуется в МКЭ?
 - Какие основные типы КЭ используются в МКЭ?
 - Как формулируется принцип Лагранжа?
 - Для чего нужны координатные функции и матрицы форм?
 - Что такое функция формы?
 - Как определяется матрица жесткости КЭ?
 - Какой физический смысл имеют элементы матрицы жесткости?
 - Почему и как внешняя нагрузка переносится в узлы?
 - Как осуществляется переход к общей системе координат?
 - Как формируется глобальная матрица жесткости?
 - Как учитываются граничные условия?
 - Каким образом вычисляются перемещения и внутренние усилия?
 - Какие функции выполняют препроцессор, процессор и постпроцессор?
 - Из каких этапов состоит алгоритм МКЭ?
- Чем отличается кинематический анализ пространственных систем от кинематического анализа плоских систем?
 - Какие методы используются при расчете пространственных ферм?
- Какие особенности имеет определение перемещений и расчет методом сил пространственных систем по сравнению с плоскими?
- Возникают ли усилия в статически неопределимых системах от теплового воздействия и неравномерной осадки опор и каким методом их можно определить, если они возникают?
 - Как учитывается винклеровское основание при расчете балок на упругом основании?
 - Когда происходит потеря устойчивости центрально сжатого стержня?
 - Какой критерий и метод расчета на устойчивость применяется для сложных систем?
 - Определение перемещений в с.н. системах.
 - Основные методы расчета упругих оболочек.
 - Какие основные задачи решает динамика сооружений?
 - Чем отличается динамическая степень свободы от статической?
 - На какие три вида делятся колебания колебательных систем?
 - Какая разница между собственными и свободными колебаниями?
 - Как изменяется частота колебаний при изменении массы?
 - Как определяется интеграл Дюамеля?
 - Что такое динамический коэффициент?
 - Когда возникает резонанс?
 - Что такое спектр частот?
 - Какая нагрузка называется вибрационной?
 - Какие уравнения используются при расчете на вибрационную нагрузку?
 - Каков порядок расчета на вибрационную нагрузку?
 - Что изучает теория устойчивости сооружений?

- Какие виды потери устойчивости существуют?
- Что такое критическое состояние системы?
- Что такое безразличное состояние системы?
- Что такое потеря устойчивости первого рода?
- Что такое потеря устойчивости второго рода?
- Какова основная задача теории устойчивости?
- В чем заключается статический критерий устойчивости?
- Что такое коэффициент устойчивости?
- Что такое приведенная жесткость стержня?
- Как изменяется критическая сила при увеличении жесткости системы?
- Как изменяется критическая сила при увеличении длины стержня?
- Что такое уравнение устойчивости первого рода?
- Как определяются границы критического корня?
- Как определяется критический параметр?
- От каких параметров зависит величина критической нагрузки?
- Чем отличается потеря устойчивости второго рода от потери устойчивости первого рода?
- Что такое критическая сила?
- Какими методами можно вести расчет на устойчивость?
- Какие критерии используются при расчете на устойчивость?
- Какие гипотезы принимаются при расчете рам на устойчивость?
- Что такое параметр устойчивости?
- Что такое уравнение устойчивости?
- Какие допущения принимаются при расчете плоских рам на устойчивость?
- Какой вид имеют канонические уравнения метода перемещений при расчете рам на устойчивость?
 - Как записывается уравнение изгиба сжатого стержня в момент потери устойчивости?
 - Какой способ применяется для решения уравнения устойчивости?
- Формирование характеристического уравнения устойчивости при расчете плоских рам на устойчивость при действии узловой нагрузки.
- Способы решения трансцендентного уравнения. Использование обратной линейной интерполяции.
- Формирование частотного (векового) уравнения колебаний при расчете плоских рам с конечным числом степеней свободы. Способы решения кубического уравнения.
- Определение собственных форм колебаний плоской рамы с 3-я степенями свободы. Графическое представление.
- 7.4.2. Практические задания для проведения промежуточной аттестации обучающихся Файл с типовыми заданиями размещены по адресу: ЭИОС / СДО Moodle / Курсы / Кафедры / Строительной механики (https://moodle.spbgasu.ru/course/index.php?categoryid=338).
- 7.4.3. Примерные темы курсовой работы (проекта) (при наличии) Расчёт стрелы башенного крана
- 7.5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта профессиональной деятельности, характеризующие этапы формирования компетенций

Процедура проведения промежуточной аттестации и текущего контроля успеваемости регламентируется локальным нормативным актом, определяющим порядок организации и проведения текущего контроля успеваемости и промежуточной аттестации обучающихся. Процедура оценивания формирования компетенций при проведении текущего контроля приведена в п. 7.3. Типовые контрольные задания или иные материалы текущего контроля приведены в п. 7.2. Промежуточные аттестации по дисциплине проводится в форме зачёта и зачёта с оценкой. Зачёт проводится в устной форме, по результатам выполненных за семестр работ. В зачётный билет включено до 6 теоретических вопросов и до 3 практических заданий, соответствующих содержанию формируемых компетенций. Зачёт проводится в устной форме. Для подготовки по решению задач по зачётному билету отводится 40 минут.

7.6. Критерии оценивания сформированности компетенций при проведении промежуточной аттестации

		Уровень осво	ения и оценка	
	Оценка «неудовлетворитель	Оценка «удовлетворительн	Оценка «хорошо»	Оценка «отлично»
	HO»	O»>	((0.01/17.01)	
	«не зачтено»	«зачтено»		
	Уровень освоения	Уровень освоения	Уровень освоения	Уровень освоения
	компетенции	компетенции	компетенции	компетенции
	«недостаточный».	«пороговый».	«продвинутый».	«высокий».
	Компетенции не	Компетенции	Компетенции	Компетенции
	сформированы.	сформированы.	сформированы.	сформированы.
	Знания отсутствуют,	Сформированы	Знания обширные,	Знания
	умения и навыки не	базовые структуры	системные. Умения	аргументированные,
Критерии	сформированы	знаний. Умения	носят	всесторонние. Умения
оценивания		фрагментарны и	репродуктивный	успешно
		НОСЯТ	характер,	применяются к
		репродуктивный	применяются к	решению как
		характер.	решению типовых	типовых, так и
		Демонстрируется	заданий.	нестандартных
		низкий уровень	Демонстрируется	творческих заданий.
		самостоятельности	достаточный	Демонстрируется
		практического	уровень	высокий уровень
		навыка.	самостоятельности	самостоятельности,
			устойчивого	высокая адаптивность
			практического	практического навыка
			навыка.	

	1			
	Обучающийся	Обучающийся	Обучающийся	Обучающийся
	демонстрирует:	демонстрирует:	демонстрирует:	демонстрирует:
	-существенные	-знания	-знание и	-глубокие,
	пробелы в знаниях	теоретического	понимание	всесторонние и
	учебного материала;	материала;	основных вопросов	аргументированные
	-допускаются	-неполные ответы	контролируемого	знания программного
	принципиальные	на основные	объема	материала;
	ошибки при ответе	вопросы, ошибки в	программного	-полное понимание
	на основные	ответе,	материала;	сущности и
	вопросы билета,	недостаточное	- знания	взаимосвязи
	отсутствует знание и	понимание	теоретического	рассматриваемых
	понимание	сущности	материала	процессов и явлений,
	основных понятий и	излагаемых	-способность	точное знание
	категорий;	вопросов;	устанавливать и	основных понятий, в
	-непонимание	-неуверенные и	объяснять связь	рамках обсуждаемых
знания	сущности	неточные ответы	практики и теории,	заданий;
	дополнительных	на дополнительные	ВЫЯВЛЯТЬ	-способность
	вопросов в рамках	вопросы.	противоречия,	устанавливать и
	заданий билета.		проблемы и	объяснять связь
			тенденции	практики и теории,
			развития;	-логически
			-правильные и	последовательные,
			конкретные, без	содержательные,
			грубых ошибок,	конкретные и
			ответы на	исчерпывающие
			поставленные	ответы на все задания
			вопросы.	билета, а также
				дополнительные
				вопросы
				экзаменатора.
	При выполнении	Обучающийся	Обучающийся	Обучающийся
	практического	выполнил	выполнил	правильно выполнил
	задания билета	практическое	практическое	практическое задание
	обучающийся	задание билета с	задание билета с	билета. Показал
	продемонстрировал	существенными	небольшими	отличные умения в
	недостаточный	неточностями.	неточностями.	рамках освоенного
	уровень умений.	Допускаются	Показал хорошие	учебного материала.
	Практические	ошибки в	умения в рамках	Решает
	задания не	содержании ответа	освоенного	предложенные
	выполнены	и решении	учебного	практические задания
умения	Обучающийся не	практических	материала.	без ошибок
	отвечает на вопросы	заданий.	Предложенные	Ответил на все
	билета при	При ответах на	практические	дополнительные
	дополнительных	дополнительные	задания решены с	вопросы.
	наводящих вопросах	вопросы было	небольшими	
	преподавателя.	допущено много	неточностями.	
			O	
		неточностей.	Ответил на	
		неточностей.	ответил на большинство	
		неточностей.		
		неточностей.	большинство	

		1		
	Не может выбрать	Испытывает	Без затруднений	Применяет
	методику	затруднения по	выбирает	теоретические знания
	выполнения	выбору методики	стандартную	для выбора методики
	заданий.	выполнения	методику	выполнения заданий.
	Допускает грубые	заданий.	выполнения	Не допускает ошибок
	ошибки при	Допускает ошибки	заданий.	при выполнении
	выполнении	при выполнении	Допускает ошибки	заданий.
	заданий,	заданий,	при выполнении	Самостоятельно
	нарушающие логику	нарушения логики	заданий, не	анализирует
	решения задач.	решения задач.	нарушающие	результаты
владение	Делает	Испытывает	логику решения	выполнения заданий.
навыками	некорректные	затруднения с	задач	Грамотно
парыкант	выводы.	формулированием	Делает корректные	обосновывает ход
	Не может	корректных	выводы по	решения задач.
	обосновать	выводов.	результатам	
	алгоритм	Испытывает	решения задачи.	
	выполнения	затруднения при	Обосновывает ход	
	заданий.	обосновании	решения задач без	
		алгоритма	затруднений.	
		выполнения	- 7	
		заданий.		

Оценка по дисциплине зависит от уровня сформированности компетенций, закрепленных за дисциплиной, и представляет собой среднее арифметическое от выставленных оценок по отдельным результатам обучения (знания, умения, владение навыками).

Оценка «отлично»/«зачтено» выставляется, если среднее арифметическое находится в интервале от 4,5 до 5,0.

Оценка «хорошо»/«зачтено» выставляется, если среднее арифметическое находится в интервале от 3.5 до 4.4.

Оценка «удовлетворительно»/«зачтено» выставляется, если среднее арифметическое находится в интервале от 2,5 до 3,4.

Оценка «неудовлетворительно»/«не зачтено» выставляется, если среднее арифметическое находится в интервале от 0 до 2,4.

8. Учебно-методическое и материально-техническое обеспечение дисциплины (модуля)

8.1. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины (модуля)

№ п/п	Автор, название, место издания, издательство, год издания учебной и учебно-методической литературы	Количество экземпляров/электр онный адрес ЭБС		
	Основная литература			
1	Соколов С. А., Строительная механика и металлические конструкции машин, Санкт-Петербург: Политехника, 2020	http://www.iprbooksh op.ru/94830.html		
2	Бабанов В. В., Теоретическая механика для архитекторов : в 2 т., Москва: Академия, 2008	366		
<u>Дополнительная литература</u>				
1	Бабанов В. В., Строительная механика, М.: Академия, 2011	384		

Обучающиеся из числа инвалидов и лиц с OB3 обеспечиваются печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

8.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Наименование ресурса сети «Интернет»	Электронный адрес ресурса
Научно-техническая библиотека СПбГАСУ	https://www.spbgasu.ru/university/divisi ons/nauchno-tekhnicheskaya-biblioteka/

8.3. Перечень современных профессиональных баз данных и информационных справочных систем

Наименование	Электронный адрес ресурса
Электронно-библиотечная система издательства "Лань"	https://e.lanbook.com/
Электронная библиотека Ирбис 64	http://ntb.spbgasu.ru/irbis64r_p lus/
Система дистанционного обучения СПбГАСУ Moodle	https://moodle.spbgasu.ru/
Информационно-правовая база данных Кодекс	http://gasudata.lan.spbgasu.ru/docs/
Информационно-правовая система Консультант	\\law.lan.spbgasu.ru\Consultant Plus ADM
Электронно-библиотечная система издательства "IPRsmart"	http://www.iprbookshop.ru/
Российская государственная библиотека	www.rsl.ru
Единый электронный ресурс учебно-методической литературы СПбГАСУ	www.spbgasu.ru

8.4. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного и свободно распространяемого программного обеспечения

Наименование	Способ распространения (лицензионное или свободно распространяемое)
Лира	Соглашение о сотрудничестве №СС002 от 12.11.2013 с ООО "ЛИРА софт". Лицензия бессрочная
Math Cad версия 15	Сублицензионное соглашение на использование продуктов "РТС" с ООО"Софт Лоджистик" договор №20716/SPB9 2010 г. Лицензия бессрочная
Scad Office версия 21	SCAD Office договор №113 от 13.03.2015 с ООО "Автоматизация Проектных работ". Лицензия бессрочная
КОМПАС-3D APM FEM	Сублицензионный договор №АСЗ -17-00534 от 13.06.2017 на 50лиц+ сублицензионный договор №АСЗ-20-00218 от 20.04.2020 еще на 50лиц с ООО "АСКОН-Северо-Запад". Лицензия бессрочная
Agisoft Metashape	Договор № 2018.52901 от 08.05.2018 г. Лицензия бессрочная

8.5. Материально-техническое обеспечение дисциплины

Сведения об оснащенности учебных аудиторий и помещений для самостоятельной работы

Наименование учебных аудиторий и помещений для самостоятельной работы	Оснащенность оборудованием и техническими средствами обучения
59. Учебные аудитории для проведения лекционных занятий	Учебная аудитория для проведения занятий лекционного типа, комплект мультимедийного оборудования (персональный компьютер, мультимедийный проектор, экран, аудиосистема), доска, экран, комплект учебной мебели, подключение к компьютерной сети СПбГАСУ, выход в Интернет.
59. Межкафедральная лаборатория: Секция А 2-я Красноармейская ул. д.4 Ауд. № 40, № 15, № 226	Гидравлическая машина 30тс; Испытательная машина 140тс; Пресс гидравлический 50тс; Машина испытательная 50тс; Пресс гидравлический 50тс; Универсальная напольная испытательная электромеханическая машина до 100 кН; Универсальная настольная испытательная электромеханическая машина до 10 кН; Универсальная настольная испытательная электромеханическая машина до 50кН; Универсальная электромеханическая машина до 50кН; Универсальная электромеханическая испытательная испытательная испытательная машина 600кН; Сервогидравлическая испытательная система UTM на 100кН; Сервогидравлическая высокочастотная испытательная система МаКгоп на 25кН; Сервогидравлическая испытательная система - Мадпит - 2000кН; А1220 МОNOLITH ультразвуковой дефектоскоп для контроля бетона; Детектор стержней арматуры и определение толщины защитного слоя; Молоток для испытаний бетона SilverSchmidt PC; Прибор для определения прочности материалов методом отрыва ПОС 50МГ4.У; Твердомер Equotip 3; Ультразвуковой прибор Pundit Lab; TDS-150 - Комплекс измерительный 40-канальный; ТDS-530-30 - Комплекс измерительный 30-канальный; Ноутбук ASUS X450LB-WX0; Портативный многоосновной оптико-эмиссионный анализатор химического состава металлов и сплавов РМІ-МАSTER UVR Pro; Портативный рентгено-флуоресцентный спектрометр для анализа металлов с возможностью определения "легких элементов" X-МЕТ 8000 Ехрегt
59. Учебные аудитории для проведения практических занятий, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Учебная аудитория для проведения практических занятий, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации — комплект мультимедийного оборудования (персональный компьютер, мультимедийный проектор, экран, аудиосистема), доска, комплект учебной мебели, подключение к компьютерной сети СПбГАСУ, выход в Интернет.

59. Помещения для самостоятельной работы	Помещение для самостоятельной работы (читальный зал библиотеки, ауд. 217): ПК-23 шт., в т.ч. 1 шт ПК для лиц с ОВЗ (системный блок, монитор, клавиатура, мышь) с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду СПбГАСУ.
--	---

Для инвалидов и лиц с OB3 обеспечиваются специальные условия для получения образования в соответствии с требованиями нормативно-правовых документов.