

### Федеральное государственное бюджетное образовательное учреждение высшего образования

#### САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра Наземных транспортно-технологических машин

УТВЕРЖДАЮ Начальник учебно-методического управления

«29» июня 2023 г.

#### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Моделирование рабочих процессов

направление подготовки/специальность 23.05.01 Наземные транспортно-технологические средства направленность (профиль)/специализация образовательной программы Подъемно-транспортные, строительные, дорожные средства и оборудование

Форма обучения очная

#### 1. Цели и задачи освоения дисциплины (модуля)

Цель освоения дисциплины - дать студентам представление об общих идеях и практических методах моделирования таких сложных систем, как транспортно-технологические машины и оборудование. Это необходимо для оценки показателей их эффективности, надежности, а также принятия оптимальных решений на стадиях конструирования, изготовления и эксплуатации.

Задачами освоения дисциплины являются: ознакомление студентов с методами моделирования рабочих процессов; освоение теории и методов математического моделирования с учетом требований системности с использованием различных программных продуктов; освоение навыков организации моделирования систем на современных средствах вычислительной техники, в том числе с применением систем трехмерного моделирования; умение анализировать модель на ее адекватность.

2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

| Код и наименование компетенции                                                                                    | Код и наименование индикатора достижения компетенции                                                                                                                                  | Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения ОПОП                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ПК-4 Способен                                                                                                     | ПК-4.1 Осуществляет выбор                                                                                                                                                             | знает                                                                                                                                                                                                                                                                                                              |
| разрабатывать проект конструкции подъемнотранспортных, строительных и дорожных машин и оборудования               | информационных ресурсов в соответствии с техническим заданием                                                                                                                         | Возможности наиболее распространённых прикладных программ расчёта и моделирования умеет Строить математические модели и формулировать технические задачи владеет Методами моделирования процессов                                                                                                                  |
| ПК-4 Способен разрабатывать проект конструкции подъемнотранспортных, строительных и дорожных машин и оборудования | ПК-4.2 Разрабатывает проект технического предложения с учетом возможности механизации, автоматизации и роботизации подъемнотранспортных, строительных и дорожных машин и оборудования | знает Современные тенденции развития технического прогресса в области оптимизации  умеет Использовать для решения профессиональных задач прикладные программы расчета и моделирования владеет Методами моделирования рабочих процессов                                                                             |
| ПК-4 Способен разрабатывать проект конструкции подъемнотранспортных, строительных и дорожных машин и оборудования | ПК-4.4 Разрабатывает технический проект                                                                                                                                               | знает Автоматизированные системы управления и проектирования умеет Моделирования при разработке схем и конструкций узлов, агрегатов и систем, транспортно-технологических средств и их технологического оборудования владеет Методами расчёта моделей с использованием прикладных программ расчета и моделирования |

#### 3. Указание места дисциплины (модуля) в структуре образовательной программы

Данная дисциплина (модуль) включена в Блок «Дисциплины, модули» Б1.В.04 основной профессиональной образовательной программы 23.05.01 Наземные транспортно-технологические средства и относится к части, формируемой участниками образовательных отношений учебного плана.

| <b>№</b><br>п/п | Предшествующие дисциплины               | Код и наименование индикатора достижения компетенции                                                            |
|-----------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1               | Высшая математика                       | УК-1.5, УК-1.6                                                                                                  |
| 2               | Детали машин и основы конструирования   | УК-1.4, ОПК-1.4, ПК-2.1, ПК-4.2                                                                                 |
| 3               | Программные системы инженерного анализа | ОПК-2.1, ОПК-2.2, ОПК-2.3, ПК-<br>4.2, ПК(Ц)-1.1, ПК(Ц)-1.2, ПК(Ц)-<br>1.3, ПК(Ц)-1.4, ПК(Ц)-1.5, ПК(Ц)-<br>1.6 |

Высшая математика

Знать: фундаментальные основы высшей математики.

Уметь: выявлять проблему, анализировать её и решать с помощью построения цепочки логических выводов, использую полученные математические знания.

Владеть: первичными навыками и основными методами решения математических задач из дисциплин профессионального цикла и дисциплин профильной направленности.

Детали машин и основы конструирования

Знать: физические основы взаимодействия элементов механических систем.

Уметь: выполнять типовые рас-четы механических передач, подшипников, муфт, пружин,

болтов, винтов, сварных и резьбовых соединений.

Владеть: методами расчета де-талей машин с учётом требований надёжности, технологичности, безопасности, охраны окружающей среды и конкурентоспособности.

Программные системы инженерного анализа

Знать: основные современные системы компьютерной математики, их возможности и специфику.

Уметь: решать основные задачи линейной алгебры и математического анализа в каждой из систем.

Владеть: навыками применения пакетов прикладных программ по моделированию,

| <b>№</b><br>п/п | Последующие дисциплины          | Код и наименование индикатора достижения компетенции                                                             |
|-----------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1               | Моделирование сложных процессов | ОПК-2.1, ОПК-2.2, ОПК-2.3, ОПК<br>-3.2, ПК(Ц)-1.1, ПК(Ц)-1.2, ПК(Ц)-<br>1.3, ПК(Ц)-1.4, ПК(Ц)-1.5, ПК(Ц)-<br>1.6 |
| 2               | Надежность технических систем   | УК-1.3, ПК-1.5, ПК-1.6                                                                                           |

# 4. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

|                                                                                                                                   |                |                                        | Семестр |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|---------|
| Вид учебной работы                                                                                                                | Всего<br>часов | Из них часы на практическую подготовку | 6       |
| Контактная работа                                                                                                                 | 48             |                                        | 48      |
| Лекционные занятия (Лек)                                                                                                          | 16             | 0                                      | 16      |
| Практические занятия (Пр)                                                                                                         | 32             | 6                                      | 32      |
| Иная контактная работа, в том числе:                                                                                              |                |                                        |         |
| консультации по курсовой работе (проекту), контрольным работам (РГР)                                                              |                |                                        |         |
| контактная работа на аттестацию (сдача зачета, зачета с оценкой; защита курсовой работы (проекта); сдача контрольных работ (РГР)) |                |                                        |         |
| контактная работа на аттестацию в сессию (консультация перед экзаменом и сдача                                                    |                |                                        |         |
| Часы на контроль                                                                                                                  | 4              |                                        | 4       |
| Самостоятельная работа (СР)                                                                                                       | 56             |                                        | 56      |
| Общая трудоемкость дисциплины (модуля)                                                                                            |                |                                        |         |
| часы:                                                                                                                             | 108            |                                        | 108     |
| зачетные единицы:                                                                                                                 | 3              |                                        | 3       |

## 5. Содержание дисциплины (модуля), структурированное по разделам (темам) с указанием отведенного на них количества академических часов и видов учебных занятий

5.1. Тематический план дисциплины (модуля)

|      | Разделы дисциплины                                                                                   | (WIO)   | Контактная работа (по учебным занятиям), час. |                                                      |       |                                                      |       |                                                      |    | Код         |                              |
|------|------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------|------------------------------------------------------|-------|------------------------------------------------------|-------|------------------------------------------------------|----|-------------|------------------------------|
| №    |                                                                                                      | Семестр | лен                                           | сции                                                 | I     | T3                                                   | J     | ПΡ                                                   | СР | Всего, час. | индикатор<br>а<br>достижени  |
|      |                                                                                                      | Э       | всего                                         | из них<br>на<br>практи-<br>ческую<br>подго-<br>товку | всего | из них<br>на<br>практи-<br>ческую<br>подго-<br>товку | всего | из них<br>на<br>практи-<br>ческую<br>подго-<br>товку |    |             | я<br>компетенц<br>ии         |
| 1.   | 1 раздел. Модели на основе классической механики                                                     |         |                                               |                                                      |       |                                                      |       |                                                      |    |             |                              |
| 1.1. | Моделирование гидрообъёмной трансмиссии.                                                             | 6       | 2                                             |                                                      | 4     |                                                      |       |                                                      | 6  | 12          | ПК-4.1,<br>ПК-4.2,<br>ПК-4.4 |
| 1.2. | Построение модели взаимодействия рабочего органа землеройной технологической машины со средой.       | 6       | 2                                             |                                                      | 4     |                                                      |       |                                                      | 10 | 16          | ПК-4.1,<br>ПК-4.4            |
| 1.3. | Построение модели работы энергетической машины в зависимости от внешней нагрузки и модели движителя. | 6       | 2                                             |                                                      | 4     |                                                      |       |                                                      | 8  | 14          | ПК-4.1,<br>ПК-4.4            |
| 1.4. | Построение модели технологической машины.                                                            | 6       | 2                                             |                                                      | 8     | 6                                                    |       |                                                      | 8  | 18          | ПК-4.1,<br>ПК-4.2,<br>ПК-4.4 |
| 2.   | 2 раздел. Реологические модели                                                                       |         |                                               |                                                      |       |                                                      |       |                                                      |    |             |                              |
| 2.1. | Моделирование процесса дробления горных пород вибрационными машинами.                                | 6       | 2                                             |                                                      | 4     |                                                      |       |                                                      | 6  | 12          | ПК-4.1,<br>ПК-4.2,<br>ПК-4.4 |
| 2.2. | Моделирование процесса вибротранспортирования сыпучих сред.                                          | 6       | 2                                             |                                                      | 4     |                                                      |       |                                                      | 6  | 12          | ПК-4.1,<br>ПК-4.2,<br>ПК-4.4 |
| 3.   | 3 раздел. Методы оптимизации проектных решений                                                       |         |                                               |                                                      |       |                                                      |       |                                                      |    |             |                              |
| 3.1. | Моделирование транспортной и расстановочной задач                                                    | 6       | 2                                             |                                                      | 2     |                                                      |       |                                                      | 6  | 10          | ПК-4.1,<br>ПК-4.2            |
| 3.2. | Построение регрессионных моделей                                                                     | 6       | 2                                             | _                                                    | 2     |                                                      |       |                                                      | 6  | 10          | ПК-4.1,<br>ПК-4.2            |
| 4.   | 4 раздел. Контроль                                                                                   |         |                                               |                                                      |       |                                                      |       |                                                      |    |             |                              |
| 4.1. | Зачет                                                                                                | 6       |                                               |                                                      |       |                                                      |       |                                                      |    | 4           | ПК-4.1,<br>ПК-4.2,<br>ПК-4.4 |

### 5.1. Лекции

| No   | Наименование раздела                                                                                 |                                                                                                                                                                                                                                                                                                                                                                      |
|------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| разд | и темы лекций                                                                                        | Наименование и краткое содержание лекций                                                                                                                                                                                                                                                                                                                             |
| 1    | Моделирование гидрообъёмной трансмиссии.                                                             | Моделирование гидрообъёмной трансмиссии. Построение параметрической модели с использованием различных программных продуктов: MATLAB (Simulink), ANSYS, KOMПAC 3D и др. Модели классической механики, необходимые для построения модели гидрообъемной трансмисии.                                                                                                     |
| 2    | Построение модели взаимодействия рабочего органа землеройной технологической машины со средой.       | Построение модели взаимодействия рабочего органа землеройной технологической машины со средой Построение параметрической модели взаимодействия рабочих органов землеройной технологической машины со средой на основе известных зависимостей, полученных на основе классической механики в средах КОМПАС 3D (Механика: Анимация, APM FEM), МАТLАВ (Simulink), ANSYS. |
| 3    | Построение модели работы энергетической машины в зависимости от внешней нагрузки и модели движителя. | Работа двигателя внутреннего сгорания и математические модели ее описывающие Построение параметрической модели работы дизельного двигателя транспортно-технологической машины в зависимости от внешней нагрузки с использование пакета прикладных программ                                                                                                           |
| 4    | Построение модели технологической машины.                                                            | Построение модели технологической машины Построение параметрической модели землеройной технологической машины с использованием ранее полученных моделей с использованием программных продуктов КОМПАС 3D (Механика: Анимация, APM FEM, KompasFlow, библиотеки стандартных изделий), MATLAB (Simulink), ANSYS.                                                        |
| 5    | Моделирование процесса дробления горных пород вибрационными машинами.                                | Моделирование процесса дробления горных пород Моделирование процесса дробления горных пород вибрационными дробилками, с использованием реологических представлений о взаимодействии рабочих органов технологических машин со средой.                                                                                                                                 |
| 6    | Моделирование процесса вибротранспортирован ия сыпучих сред.                                         | Моделирование процесса вибротранспортирования сыпучих сред Моделирование процесса вибротранспортирования сыпучих сред, с использованием реологических представлений о взаимодействии рабочих органов технологических машин со средой.                                                                                                                                |
| 7    | Моделирование транспортной и расстановочной задач                                                    | Моделирование транспортной и расстановочной задач Моделирование транспортной задачи методом линейного программирования с использованием MATLAB (Simulink).                                                                                                                                                                                                           |
| 8    | Построение регрессионных моделей                                                                     | Построение регрессионных моделей Сиспользование программных продуктов MATLAB (Simulink).                                                                                                                                                                                                                                                                             |

### 5.2. Практические занятия

| №<br>разд | Наименование раздела и темы практических занятий | Наименование и содержание практических занятий                                                                                                                                                                            |
|-----------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | Моделирование гидрообъёмной трансмиссии.         | Моделирование гидрообъёмной трансмиссии. Построение параметрической модели гидрообъёмной трансмиссии технологической машины на основе известных зависимостей, полученных на основе классической механики с использованием |

|   |                                                                                                      | программного продукта MATLAB (Simulink), ANSYS, KOMПAC 3D (KompasFlow)                                                                                                                                                                                                                                                                                                                                         |
|---|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Построение модели взаимодействия рабочего органа землеройной технологической машины со средой.       | Построение модели взаимодействия рабочего органа землеройной технологической машины со средой Построение параметрической модели взаимодействия рабочего органа со средой с использованием программных продуктов КОМПАС 3D (Механика: Анимация, APM FEM), MATLAB (Simulink), ANSYS.                                                                                                                             |
| 3 | Построение модели работы энергетической машины в зависимости от внешней нагрузки и модели движителя. | Построение модели работы энергетической машины в зависимости от внешней нагрузки и модели движителя Построение параметрической модели работы дизельного двигателя транспортно-технологической машины в зависимости от внешней нагрузки по заданиям преподавателя. Построение модели производится в программных продуктах КОМПАС 3D (Механика: Анимация, APM FEM, KompasFlow), MATLAB (Simulink) или (и) Ansys. |
| 4 | Построение модели технологической машины.                                                            | Построение модели технологической машины Построение параметрической модели землеройной технологической машины с использованием ранее полученных моделей с использованием программных продуктов КОМПАС 3D (Механика: Анимация, APM FEM, KompasFlow, библиотеки стандартных изделий), MATLAB (Simulink), ANSYS.                                                                                                  |
| 4 | Построение модели технологической машины.                                                            | Практическая подготовка                                                                                                                                                                                                                                                                                                                                                                                        |
| 5 | Моделирование процесса дробления горных пород вибрационными машинами.                                | Моделирование процесса дробления горных пород Моделирование процесса дробления горных пород вибрационными дробилками, с использованием реологических представлений о взаимодействии рабочих органов технологических машин со средой КОМПАС 3D (Механика: Анимация, APM FEM, Универсальный механизм Express), MATLAB (Simulink), ANSYS.                                                                         |
| 6 | Моделирование процесса вибротранспортирован ия сыпучих сред.                                         | Моделирование процесса вибротранспортирования сыпучих сред Моделирование процесса вибротранспортирования сыпучих сред, с использованием реологических представлений о взаимодействии рабочих органов технологических машин со средой с использованием программных продуктов КОМПАС 3D (Механика: Анимация, АРМ FEM, Универсальный механизм Express), MATLAB (Simulink), ANSYS.                                 |
| 7 | Моделирование транспортной и расстановочной задач                                                    | Моделирование транспортной и расстановочной задач Моделирование транспортной задачи методом линейного программирования с использованием MATLAB (Simulink).                                                                                                                                                                                                                                                     |
| 8 | Построение регрессионных моделей                                                                     | Построение регрессионных моделей Построение регрессионных моделей с использованием программных продуктов MATLAB (Simulink).                                                                                                                                                                                                                                                                                    |

### 5.3. Самостоятельная работа обучающихся

| №<br>разд | Наименование раздела дисциплины и темы   | Содержание самостоятельной работы                                                                                 |
|-----------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1         | Моделирование гидрообъёмной трансмиссии. | Моделирование гидрообъёмной трансмиссии. Изучение материалов лекции. Решение практических задач по моделированию. |
| 2         | Построение модели взаимодействия         | Построение модели взаимодействия рабочего органа землеройной                                                      |

|   | I                                                                                                    | <u>,                                      </u>                                                                                                                               |
|---|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | рабочего органа                                                                                      | технологической машины со средой                                                                                                                                             |
|   | землеройной                                                                                          | Изучение материалов лекции. Решение практических задач по                                                                                                                    |
|   | технологической                                                                                      | моделированию.                                                                                                                                                               |
|   | машины со средой.                                                                                    |                                                                                                                                                                              |
| 3 | Построение модели работы энергетической машины в зависимости от внешней нагрузки и модели движителя. | Построение модели работы энергетической машины в зависимости от внешней нагрузки и модели движителя Изучение материалов лекции. Решение практических задач по моделированию. |
| 4 | Построение модели технологической машины.                                                            | Построение модели технологической машины Изучение материалов лекции. Решение практических задач по моделированию.                                                            |
| 5 | Моделирование процесса дробления горных пород вибрационными машинами.                                | Моделирование процесса дробления горных пород Изучение материалов лекции. Решение практических задач по моделированию.                                                       |
| 6 | Моделирование процесса вибротранспортирован ия сыпучих сред.                                         | Моделирование процесса вибротранспортирования сыпучих сред Изучение материалов лекции. Решение практических задач по моделированию.                                          |
| 7 | Моделирование транспортной и расстановочной задач                                                    | Моделирование транспортной и расстановочной задач Изучение материалов лекции. Решение практических задач по моделированию.                                                   |
| 8 | Построение регрессионных моделей                                                                     | Построение регрессионных моделей Изучение материалов лекции. Решение практических задач по моделированию.                                                                    |

### 6. Методические материалы для самостоятельной работы обучающихся по дисциплине (модулю)

Программой дисциплины предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал, практических занятий, предполагающих закрепление изученного материала и формирование у обучающихся необходимых знаний, умений и навыков. Кроме того, важнейшим этапом изучения дисциплины является самостоятельная работа обучающихся с использованием всех средств и возможностей современных образовательных технологий.

В объем самостоятельной работы по дисциплине включается следующее:

- изучение теоретических вопросов по всем темам дисциплины;
- подготовка к практическим занятиям;
- подготовка к зачету.

Залогом успешного освоения этой дисциплины является обязательное посещение лекционных и практических, так как пропуск одного (тем более нескольких) занятий может осложнить освоение разделов курса.

Приступая к изучению дисциплины, необходимо, в первую очередь, ознакомиться с содержанием РПД для студентов очной формы обучения, а также методическими указаниями по организации самостоятельной работы и подготовке к практическим занятиям.

При подготовке к практическим обучающимся необходимо:

- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- при самостоятельном изучении теоретической темы сделать конспект, используя рекомендованные в РПД источники;
  - выполнить практические задания в рамках изучаемой темы;
  - подготовиться к текущей и промежуточной аттестации.

Итогом изучения дисциплины является зачет. Зачет проводится по расписанию сессии. Форма проведения занятия - устная с выполнением практического задания с использованием соответствующего программного обеспечения. Студенты, не прошедшие аттестацию по графику сессии, должны ликвидировать задолженность в установленном порядке.

### 7. Оценочные материалы для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине (модулю)

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины

| <b>№</b><br>п/п | Контролируемые разделы дисциплины (модуля)                                                           | Код и наименование индикатора контролируемой компетенции | Вид оценочного<br>средства |
|-----------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|
| 1               | Моделирование гидрообъёмной трансмиссии.                                                             | ПК-4.1, ПК-4.2, ПК-4.4                                   | Решение типовых задач.     |
| 2               | Построение модели взаимодействия рабочего органа землеройной технологической машины со средой.       | ПК-4.1, ПК-4.4                                           | Решение типовых задач.     |
| 3               | Построение модели работы энергетической машины в зависимости от внешней нагрузки и модели движителя. | ПК-4.1, ПК-4.4                                           | Решение типовых задач.     |
| 4               | Построение модели технологической машины.                                                            | ПК-4.1, ПК-4.2, ПК-4.4                                   | Решение типовых задач.     |
| 5               | Моделирование процесса дробления горных пород вибрационными машинами.                                | ПК-4.1, ПК-4.2, ПК-4.4                                   | Решение типовых задач.     |
| 6               | Моделирование процесса вибротранспортирования сыпучих сред.                                          | ПК-4.1, ПК-4.2, ПК-4.4                                   | Решение типовых задач.     |
| 7               | Моделирование транспортной и расстановочной задач                                                    | ПК-4.1, ПК-4.2                                           | Решение типовых задач.     |
| 8               | Построение регрессионных моделей                                                                     | ПК-4.1, ПК-4.2                                           | Решение типовых            |

|   |       |                        | задач. |
|---|-------|------------------------|--------|
| 9 | Зачет | ПК-4.1, ПК-4.2, ПК-4.4 |        |

7.2. Типовые контрольные задания или иные материалы текущего контроля успеваемости, необходимые для оценки знаний, умений и навыков и (или) опыта профессиональной деятельности, характеризующих этапы формирования компетенций в процессе освоения дисциплины

Примерные задания для выполнения практических работ

(для проверки сформированности индикатора достижения компетенции (ПК-4.1., ПК-4.2., ПК -4.4.))

#### Задача 1

Выполнить построение модели трансмиссии с учетом действующих на машину нагрузок. Варианты машин для проектирования:

- 1. Виброкаток;
- 2. Фронтальный огрузчик;
- 3. Экскаватор на гусеничном ходу;
- 4. Асфальтоукладчик;
- 5. Шагающий экскаватор;
- 6. Минитрактор;
- 7. Бульдозер на гусеничном ходу;
- 8. Автогрейдер;
- 9. Самоходный скрепер;
- 10. Рыхлитель;
- 11. Карьерный самосвал;
- 12. Автоэвакуатор;
- 13. Комбинированная дорожная машина;
- 14. Сочлненный самосвал;
- 15. Автогидроподъемник;
- 16. Поливомоечная машина.

Для каждой из машин необходимо рассмотреть различные условия работы и варианты нагружения.

#### Задача 2

Выполнить построение модели взаимодействия рабочего органа со средой для следующих машин (по вариантам):

- 1. Виброкаток;
- 2. Фронтальный огрузчик;
- 3. Экскаватор на гусеничном ходу;
- 4. Асфальтоукладчик;
- 5. Шагающий экскаватор;
- 6. Минитрактор;
- 7. Бульдозер на гусеничном ходу;
- 8. Автогрейдер;
- 9. Самоходный скрепер;
- 10. Рыхлитель;
- 11. Карьерный самосвал;
- 12. Автоэвакуатор;
- 13. Комбинированная дорожная машина;
- 14. Сочлненный самосвал;
- 15. Автогидроподъемник;
- 16. Поливомоечная машина.

Для каждой из машин необходимо учесть возможность работы с различными типами грунтов.

#### Задача 3

Выполнить построение модели работы дизельного двигателя наземных транспортно-

технологических машин (по вариантам):

- 1. Виброкаток;
- 2. Фронтальный огрузчик;
- 3. Экскаватор на гусеничном ходу;
- 4. Асфальтоукладчик;
- 5. Шагающий экскаватор;
- 6. Минитрактор;
- 7. Бульдозер на гусеничном ходу;
- 8. Автогрейдер;
- 9. Самоходный скрепер;
- 10. Рыхлитель;
- 11. Карьерный самосвал;
- 12. Автоэвакуатор;
- 13. Комбинированная дорожная машина;
- 14. Сочлненный самосвал;
- 15. Автогидроподъемник;
- 16. Поливомоечная машина.

Построение модели произвести для различных условий движения.

#### Задача 4

Для указанных в задачах 1-3 машин построить параметрическую модель машины учитывающую особенности ее эксплуатации.

Построение произвести с учетом особенностей конструкции конкретной модели машины.

#### Задача 5

Выполнить построение модели дробления горных пород для следующих машин:

- 1. Щековая дробилка;
- 2. Конусная дробилка;
- 3. Молотковая дробилка;
- 4. Валковая дробилка;
- 5. Роторная дробилка.

Для каждой из указанных дробилок построение модели необходимо произвести для различных типов материалов.

#### Задача 6

Выполнить построение модели вибротранспортирования сыпучих сред на следующих вибрационных конвейерах (по вариантам):

- 1. Подвесной одномассовый конвейер;
- 2. Опертый одномассовый конвейер;
- 3. Двухмассовый динамически уравновешенный конвейер.

Для каждого из указанного конвейеров построение модели необходимо произвести для различных типов материалов.

#### Задача 7

Выполнить моделирование транспортной задачи на примере комплекта машин (по вариантам):

- 1. Экскаватор + автосамосвал;
- 2. Фронтальный погрузчик + сочлененный самосвал;
- 3. Автосамосвал + бульдозер;
- 4. Асфальтоукладчик + каток;
- 5. Автосамосвал + асфальтоукладчик;
- 6. Автобетоносмеситель + бетононасос;
- 7. Скрепер + бульдозер;
- 8. Снегооуборочная машина непрерывного действия + автосамосвал.

Построить параметрическую модель, позволяющая подобрать оптимальный комплект машин для выполнения данных операций.

#### Задача 8

Выполнить построение регресионной модели рабочего процесса машины, по вариантам, указанным в задачах 1-4 с целью оптимизации рабочих процессов. При построении модели необходимо учесть данные расчетов, полученных при выполнении задач 1-4 и статистические данных, полученные при реальной эксплуатации указанных машин.

### 7.3. Система оценивания результатов обучения по дисциплине (модулю) при проведении текущего контроля успеваемости

| контроля успеваемости | 1                                                                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Оценка                | знания:                                                                                                                     |
| «отлично» (зачтено)   | - систематизированные, глубокие и полные знания по всем разделам                                                            |
|                       | дисциплины, а также по основным вопросам, выходящим за пределы                                                              |
|                       | учебной программы;                                                                                                          |
|                       | - точное использование научной терминологии, систематически грамотное                                                       |
|                       | и логически правильное изложение ответа на вопросы;                                                                         |
|                       | - полное и глубокое усвоение основной и дополнительной литературы,                                                          |
|                       | рекомендованной рабочей программой по дисциплине (модулю)                                                                   |
|                       | умения:                                                                                                                     |
|                       | - умеет ориентироваться в теориях, концепциях и направлениях                                                                |
|                       | дисциплины и давать им критическую оценку, используя научные                                                                |
|                       | достижения других дисциплин                                                                                                 |
|                       | навыки:                                                                                                                     |
|                       | - высокий уровень сформированности заявленных в рабочей программе компетенций;                                              |
|                       | - владеет навыками самостоятельно и творчески решать сложные                                                                |
|                       | проблемы и нестандартные ситуации;                                                                                          |
|                       | - применяет теоретические знания для выбора методики выполнения                                                             |
|                       | заданий;                                                                                                                    |
|                       | - грамотно обосновывает ход решения задач;                                                                                  |
|                       | - безупречно владеет инструментарием учебной дисциплины, умение его                                                         |
|                       | эффективно использовать в постановке научных и практических задач;                                                          |
|                       | - творческая самостоятельная работа на                                                                                      |
|                       | практических/семинарских/лабораторных занятиях, активно участвует в                                                         |
|                       | групповых обсуждениях, высокий уровень культуры исполнения заданий                                                          |
| Оценка                | знания:                                                                                                                     |
| «хорошо» (зачтено)    | - достаточно полные и систематизированные знания по дисциплине;                                                             |
| (Sa Treno)            | - усвоение основной и дополнительной литературы, рекомендованной                                                            |
|                       | рабочей программой по дисциплине (модулю)                                                                                   |
|                       | умения:                                                                                                                     |
|                       | - умеет ориентироваться в основных теориях, концепциях и направлениях                                                       |
|                       | дисциплины и давать им критическую оценку;                                                                                  |
|                       | - использует научную терминологию, лингвистически и логически                                                               |
|                       | правильно излагает ответы на вопросы, умеет делать обоснованные                                                             |
|                       | 1 -                                                                                                                         |
|                       | выводы;                                                                                                                     |
|                       | - владеет инструментарием по дисциплине, умение его использовать в                                                          |
|                       | постановке и решении научных и профессиональных задач                                                                       |
|                       | Навыки:                                                                                                                     |
|                       | - самостоятельная работа на практических занятиях, участие в групповых                                                      |
|                       | обсуждениях, высокий уровень культуры исполнения заданий; - средний уровень сформированности заявленных в рабочей программе |
|                       |                                                                                                                             |
|                       | компетенций;                                                                                                                |
|                       | - без затруднений выбирает стандартную методику выполнения заданий; - обосновывает ход решения задач без затруднений        |
|                       | - ооосновывает ход решения задач осз затруднении                                                                            |

| Оценка                                    | знания:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| «удовлетворительно»                       | - достаточный минимальный объем знаний по дисциплине;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (зачтено)                                 | <ul> <li>усвоение основной литературы, рекомендованной рабочей программой;</li> <li>использование научной терминологии, стилистическое и логическое изложение ответа на вопросы, умение делать выводы без существенных ошибок умения:</li> <li>умеет ориентироваться в основных теориях, концепциях и направлениях по дисциплине и давать им оценку;</li> <li>владеет инструментарием учебной дисциплины, умение его использовать в решении типовых задач;</li> <li>умеет под руководством преподавателя решать стандартные задачи навыки:</li> <li>работа под руководством преподавателя на практических занятиях, допустимый уровень культуры исполнения заданий;</li> <li>достаточный минимальный уровень сформированности заявленных в рабочей программе компетенций;</li> <li>испытывает затруднения при обосновании алгоритма выполнения заданий</li> </ul> |
| Оценка «неудовлетворительно» (не зачтено) | знания: - фрагментарные знания по дисциплине; - отказ от ответа (выполнения письменной работы); - знание отдельных источников, рекомендованных рабочей программой по дисциплине; умения: - не умеет использовать научную терминологию; - наличие грубых ошибок навыки: - низкий уровень культуры исполнения заданий; - низкий уровень сформированности заявленных в рабочей программе компетенций; - отсутствие навыков самостоятельной работы; - не может обосновать алгоритм выполнения заданий                                                                                                                                                                                                                                                                                                                                                                 |

- 7.4. Теоретические вопросы и практические задания для проведения промежуточной аттестации обучающихся, необходимые для оценки знаний, умений и навыков и (или) опыта профессиональной деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
- 7.4.1. Теоретические вопросы для проведения промежуточной аттестации обучающихся Примерные теоретические вопросы для проведения промежуточной аттестации обучающихся
  - 1. Понятие модели, как описания технического объекта.
  - 2. Примеры моделей технических объектов.
  - 3. Определение ММ, назначение ММ, требования к ММ.
  - 4. Примеры ММ на основе алгебраических уравнений.
  - 5. Примеры ММ на основе системы алгебраических линейных уравнений.
  - 6. Примеры ММ на основе дифференциальных уравнений.
  - 7. Примеры ММ на основе системы обыкновенных дифференциальных уравнений.
  - 8. Примеры вероятностных ММ.
  - 9. Этапы создания ММ.
  - 10. Пример ММ динамической задачи.
  - 11. Назначение реологических моделей.
  - 12. Простейшие реологические модели: Гука, Ньютона, Сен-Венана.
  - 13. Модели Кельвина-Фойхта, Модель Максвелла, Бингама, Шведова, Кельвина-Шведова.
  - 14. ММ процесса резания грунта.

- 15. ММ процесса взаимодействия движителя НТТМ с грунтом.
- 16. ММ процесса дробления в щековой дробилке.
- 17. ММ взаимодействия лопаток смесителя с бетонной смесью.
- 18. ММ процесса трамбования.
- 19. Общий алгоритм получения эмпирических зависимостей.
- 20. Подбор вида уравнения для случая парной зависимости.
- 21. Определение коэффициента корреляции. Определение коэффициентов выбранного уравнения методом наименьших квадратов в простейшем случае двумерного пространства.
- 22. Оценка значимости коэффициента парной корреляции при помощи критерия согласия Стьюдента.
- 23. Оценка адекватности полученного уравнения регрессии при помощи критерия согласия Фишера.
  - 24. Алгоритм планирования полнофакторного эксперимента.
  - 25. Математическая постановка задачи оптимизации.
  - 26. Краткая характеристика возможных целевых функций.
  - 27. Метод покоординатного спуска; метод градиента.
- 7.4.2. Практические задания для проведения промежуточной аттестации обучающихся Примерный вариант заданий для проведения промежуточной аттестации

Построить модель рабочего органа наземной транспортно-технологической машины и определить действующие на него нагрузки.

Указать максимальные величины действующих нагрузок, построить модель взаимодействия рабочего органа со средой и произвести расчет коэффициента запаса прочности.

Виды машин:

- 1. Бульдозер;
- 2. Автогрейдер;
- 3. Экскаватор;
- 4. Скрепер;
- 5. Фронтальный погрузчик.
- 7.4.3. Примерные темы курсовой работы (проекта) (при наличии)

Курсовые проекты (работы) учебным планом не предусмотрены.

7.5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта профессиональной деятельности, характеризующие этапы формирования компетенций

Процедура проведения промежуточной аттестации и текущего контроля успеваемости регламентируется локальным нормативным актом, определяющим порядок организации и проведения текущего контроля успеваемости и промежуточной аттестации обучающихся. Процедура оценивания формирования компетенций при проведении текущего контроля приведена в п. 7.3. Типовые контрольные задания или иные материалы текущего контроля приведены в п. 7.2. Промежуточная аттестация по дисциплине проводится в форме зачета. Зачет проводится в форме собеседования и решения практической задачи.

### 7.6. Критерии оценивания сформированности компетенций при проведении промежуточной аттестации

|            |                    | Уровень освоения и оценка |                 |                  |
|------------|--------------------|---------------------------|-----------------|------------------|
| Критерии   | Оценка             | Оценка                    |                 |                  |
| оценивания | «неудовлетворитель | «удовлетворительн         | Оценка «хорошо» | Оценка «отлично» |
| оценивания | но»                | 0>>                       |                 |                  |
|            | «не зачтено»       | «зачтено»                 |                 |                  |

|        | Уровень освоения компетенции «недостаточный». Компетенции не сформированы. Знания отсутствуют, умения и навыки не сформированы                                                                                                                                                               | Уровень освоения компетенции «пороговый». Компетенции сформированы. Сформированы базовые структуры знаний. Умения фрагментарны и носят репродуктивный характер. Демонстрируется низкий уровень самостоятельности практического навыка. | Уровень освоения компетенции «продвинутый». Компетенции сформированы. Знания обширные, системные. Умения носят репродуктивный характер, применяются к решению типовых заданий. Демонстрируется достаточный уровень самостоятельности устойчивого практического навыка.                                                                               | Уровень освоения компетенции «высокий». Компетенции сформированы. Знания аргументированные, всесторонние. Умения успешно применяются к решению как типовых, так и нестандартных творческих заданий. Демонстрируется высокий уровень самостоятельности, высокая адаптивность практического навыка                                                                                                                                                                     |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| знания | Обучающийся демонстрирует: -существенные пробелы в знаниях учебного материала; -допускаются принципиальные ошибки при ответе на основные вопросы билета, отсутствует знание и понимание основных понятий и категорий; -непонимание сущности дополнительных вопросов в рамках заданий билета. | Обучающийся демонстрирует: -знания теоретического материала; -неполные ответы на основные вопросы, ошибки в ответе, недостаточное понимание сущности излагаемых вопросов; -неуверенные и неточные ответы на дополнительные вопросы.    | Обучающийся демонстрирует: -знание и понимание основных вопросов контролируемого объема программного материала; - знания теоретического материала -способность устанавливать и объяснять связь практики и теории, выявлять противоречия, проблемы и тенденции развития; -правильные и конкретные, без грубых ошибок, ответы на поставленные вопросы. | Обучающийся демонстрирует: -глубокие, всесторонние и аргументированные знания программного материала; -полное понимание сущности и взаимосвязи рассматриваемых процессов и явлений, точное знание основных понятий, в рамках обсуждаемых заданий; -способность устанавливать и объяснять связь практики и теории, -логически последовательные, содержательные, конкретные и исчерпывающие ответы на все задания билета, а также дополнительные вопросы экзаменатора. |

|          | При выполнении      | Обучающийся       | Обучающийся       | Обучающийся          |
|----------|---------------------|-------------------|-------------------|----------------------|
|          | практического       | выполнил          | выполнил          | правильно выполнил   |
|          | задания билета      | практическое      | практическое      | практическое задание |
|          | обучающийся         | задание билета с  | задание билета с  | билета. Показал      |
|          | продемонстрировал   | существенными     | небольшими        | отличные умения в    |
|          | недостаточный       | неточностями.     | неточностями.     | рамках освоенного    |
|          | уровень умений.     | Допускаются       | Показал хорошие   | учебного материала.  |
|          | Практические        | ошибки в          | умения в рамках   | Решает               |
|          | задания не          | содержании ответа | освоенного        | предложенные         |
|          | выполнены           | и решении         | учебного          | практические задания |
| умения   | Обучающийся не      | практических      | материала.        | без ошибок           |
|          | отвечает на вопросы | заданий.          | Предложенные      | Ответил на все       |
|          | билета при          | При ответах на    | практические      | дополнительные       |
|          | дополнительных      | дополнительные    | задания решены с  | вопросы.             |
|          | наводящих вопросах  | вопросы было      | небольшими        |                      |
|          | преподавателя.      | допущено много    | неточностями.     |                      |
|          |                     | неточностей.      | Ответил на        |                      |
|          |                     |                   | большинство       |                      |
|          |                     |                   | дополнительных    |                      |
|          |                     |                   | вопросов.         |                      |
|          |                     |                   |                   |                      |
|          | Не может выбрать    | Испытывает        | Без затруднений   | Применяет            |
|          | методику            | затруднения по    | выбирает          | теоретические знания |
|          | выполнения          | выбору методики   | стандартную       | для выбора методики  |
|          | заданий.            | выполнения        | методику          | выполнения заданий.  |
|          | Допускает грубые    | заданий.          | выполнения        | Не допускает ошибок  |
|          | ошибки при          | Допускает ошибки  | заданий.          | при выполнении       |
|          | выполнении          | при выполнении    | Допускает ошибки  | заданий.             |
|          | заданий,            | заданий,          | при выполнении    | Самостоятельно       |
|          | нарушающие логику   | нарушения логики  | заданий, не       | анализирует          |
|          | решения задач.      | решения задач.    | нарушающие        | результаты           |
| владение | Делает              | Испытывает        | логику решения    | выполнения заданий.  |
| навыками | некорректные        | затруднения с     | задач             | Грамотно             |
|          | выводы.             | формулированием   | Делает корректные | обосновывает ход     |
|          | Не может            | корректных        | выводы по         | решения задач.       |
|          | обосновать          | выводов.          | результатам       |                      |
|          | алгоритм            | Испытывает        | решения задачи.   |                      |
|          | выполнения          | затруднения при   | Обосновывает ход  |                      |
|          | заданий.            | обосновании       | решения задач без |                      |
|          |                     | алгоритма         | затруднений.      |                      |
|          |                     | выполнения        |                   |                      |
|          |                     | заданий.          |                   |                      |
|          |                     |                   |                   |                      |
|          |                     |                   |                   | l                    |

Оценка по дисциплине зависит от уровня сформированности компетенций, закрепленных за дисциплиной, и представляет собой среднее арифметическое от выставленных оценок по отдельным результатам обучения (знания, умения, владение навыками).

Оценка «отлично»/«зачтено» выставляется, если среднее арифметическое находится в интервале от 4,5 до 5,0.

Оценка «хорошо»/«зачтено» выставляется, если среднее арифметическое находится в интервале от 3.5 до 4.4.

Оценка «удовлетворительно»/«зачтено» выставляется, если среднее арифметическое находится в интервале от 2,5 до 3,4.

Оценка «неудовлетворительно»/«не зачтено» выставляется, если среднее арифметическое находится в интервале от 0 до 2,4.

#### 8. Учебно-методическое и материально-техническое обеспечение дисциплины (модуля)

8.1. Перечень основной и дополнительной литературы, необходимой для освоения дисциплины (модуля)

| <b>№</b><br>п/п | Автор, название, место издания, издательство, год издания учебной и учебно-методической литературы                                                                                | Количество экземпляров/электр онный адрес ЭБС |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
|                 | Основная литература                                                                                                                                                               |                                               |  |
| 1               | Малышевская Л. Г., Основы моделирования в среде автоматизированной системы проектирования «КОМПАС 3D», Железногорск: Сибирская пожарно-спасательная академия ГПС МЧС России, 2017 | http://www.iprbooksh<br>op.ru/66916.html      |  |
| 2               | Трошина Г. В., Численные расчеты в среде MatLab, Новосибирск: Новосибирский государственный технический университет, 2020                                                         | http://www.iprbooksh<br>op.ru/99243.html      |  |
| 3               | Мкртычев О. В., Дорожинский В. Б., Вычислительная механика и компьютерный инжиниринг, Москва: МИСИ-МГСУ, ЭБС АСВ, 2021                                                            | https://www.iprbooks<br>hop.ru/110332.html    |  |
|                 | <u>Дополнительная литература</u>                                                                                                                                                  |                                               |  |
| 1               | Дьяконов В. П., MATLAB. Полный самоучитель, Саратов: Профобразование, 2017                                                                                                        | http://www.iprbooksh<br>op.ru/63590.html      |  |
| 2               | Поршнев С. В., Компьютерное моделирование физических процессов в пакете MATLAB, , 2011                                                                                            | https://e.lanbook.com/book/650                |  |

Обучающиеся из числа инвалидов и лиц с OB3 обеспечиваются печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

8.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

| Наименование ресурса сети «Интернет»                             | Электронный адрес ресурса                              |
|------------------------------------------------------------------|--------------------------------------------------------|
| Сайт "MATLAB and Simulink Training"                              | https://matlabacademy.mathworks.com/<br>?s_tid=acb_tut |
| Сайт ЦИТМ Экспонента                                             | https://docs.exponenta.ru                              |
| Сайт ООО «АСКОН - Системы проектирования»<br>Обучающие материалы | https://kompas.ru/publications/video/                  |
| Курс "Моделирование рабочих процессов" в системе Moodle          | https://moodle.spbgasu.ru/enrol/index.p<br>hp?id=1881  |

8.3. Перечень современных профессиональных баз данных и информационных справочных систем

|                                                                     | · 1                           |
|---------------------------------------------------------------------|-------------------------------|
| Наименование                                                        | Электронный адрес ресурса     |
| Электронно-библиотечная система издательства "Лань"                 | https://e.lanbook.com/        |
| Электронно-библиотечная система издательства "ЮРАЙТ"                | https://www.biblio-online.ru/ |
| Электронно-библиотечная система издательства "IPRsmart"             | http://www.iprbookshop.ru/    |
| Российская государственная библиотека                               | www.rsl.ru                    |
| Единый электронный ресурс учебно-методической литературы<br>СПбГАСУ | www.spbgasu.ru                |
| Тех.Лит.Ру - техническая литература                                 | http://www.tehlit.ru/         |

8.4. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного и свободно распространяемого программного обеспечения

| Наименование | Способ распространения (лицензионное или свободно распространяемое) |
|--------------|---------------------------------------------------------------------|
| LibreOffice  | Свободно распространяемое                                           |

| Ansys                   | Сублицензионный договор №1976-ПО/2017-СЗФО от 16.10.2017 г. с ЗАО "КАДФЕМ Си-Ай-Эс". Лицензия бессрочная |
|-------------------------|----------------------------------------------------------------------------------------------------------|
| Matlab версия R2019a    | Договор №Д31908369487 от 01.11.2019 с ООО "Софтлайн Проекты". Лицензия до 31.12.2025                     |
| Agisoft Metashape       | Договор № 2018.52901 от 08.05.2018 г. Лицензия бессрочная                                                |
| Solid Works версия 2019 | Договор №Тг000660287 от 27.09.2021 г. с АО "СофтЛайн Трейд". Лицензия до 30.11.2024                      |

8.5. Материально-техническое обеспечение дисциплины Сведения об оснащенности учебных аудиторий и помещений для самостоятельной работы

| Наименование учебных аудиторий и помещений для самостоятельной работы                                                                                                                                  | Оснащенность оборудованием и техническими<br>средствами обучения                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32. Помещения для самостоятельной работы                                                                                                                                                               | Помещение для самостоятельной работы (читальный зал библиотеки, ауд. 217): ПК-23 шт., в т.ч. 1 шт ПК для лиц с ОВЗ (системный блок, монитор, клавиатура, мышь) с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду СПбГАСУ. |
| 36. Компьютерный класс                                                                                                                                                                                 | Рабочие места с ПК (стол компьютерный, системный блок, монитор, клавиатура, мышь), стол рабочий, подключение к компьютерной сети СПбГАСУ, выход в Internet.                                                                                                                       |
| 32. Учебные аудитории для проведения практических занятий, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации | Комплект мультимедийного оборудования (персональный компьютер, мультимедийный проектор, экран, аудиосистема), доска, комплект учебной мебели, подключение к компьютерной сети СПбГАСУ, выход в Интернет                                                                           |
| 32. Учебные аудитории для проведения лекционных занятий                                                                                                                                                | Учебная аудитория для проведения занятий лекционного типа, комплект мультимедийного оборудования (персональный компьютер, мультимедийный проектор, экран, аудиосистема), доска, экран, комплект учебной мебели, подключение к компьютерной сети СПбГАСУ, выход в Интернет         |

Для инвалидов и лиц с OB3 обеспечиваются специальные условия для получения образования в соответствии с требованиями нормативно-правовых документов.